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Abstract

In this work we use photometric data from Kepler space observatory of 10 main
sequence stars and one red giant star to determine the mass, radius, luminosity and
age of these stars. We identify the different p-mode oscillations of these stars from
a Fourier transform of the time series and determine by hand the large frequency
separation, ∆ν, and the small frequency separation, δν. With this we determined the
mass and age of the stars using a so called C-D-diagram and thereafter plot the stars
in a Hertzsprung-Russell-diagram. Results were compared to literature source and
good agreement within 1% for the ∆ν was found.

Introduction

Stars have fascinated humanity as long as humans have existed, and not only their beauty
makes them unique. And of course, one should look always to the “inner beauty”. But
what does this means in the case of stars? Stars pulsates through heating and cooling, they
contract and expand. This leads to change in brightness of the star, which can be measured.
This allows for the deduction of the properties of stars. This is called asteroseismology.

The ultimate goal of asteroseismology is to detect enough stellar oscillation frequencies
for different modes so that the interior sound speed can be mapped and deductions can be
made about temperature, pressure, mass, age, rotation and internal structre of the star.

The understanding behind oscillations within stars has increased dramatically over
the past two decades due to extensive research of the excellent data provided by recent
space-based missions. The most recent of these missions is the Kepler mission which has
provided excellent photometric data on many stars. There is now hope that the upcoming
TESS mission can provide data on tens of thousands of stars for asteroseismic research.

In this work, we analysed 10 main sequence solar-like stars and one red giant star. For
these stars, Kepler short cadence data will be used. We will determine the mass, radius
and the age of these stars.
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Figure 1: Hertzsprung-Russell diagram showing different possible stellar oscillations. The
main sequence is represented by the dashed line. As can be seen solar like oscillations
(dashed areas) represent an area where the instability strip and main sequence intersect on
a HR diagram.[8]

Pulsating Intrinsic Variables

Stars that have time-dependent fluctuations in apparent magnitude on time scales smaller
than that of evolutionary time scales, are classed as variable stars. Asteroseismology is the
study of oscillations within pulsating intrinsic variable stars, where intrinsic means that the
luminosity variations of the star are caused by changes in the stellar interior. Stars are in
hydrostatic equilibrium, a balance between the gravitational and pressure gradient forces,
and as a result, any perturbation will be damped by some restoring force. Therefore, for an
oscillation to propagate within the interior, it requires a driving mechanism. There are four
major mechanisms that drive oscillations within stars, each of which vary depending on
the properties of that star. For the purpose of this report the mechanism behind solar-like
oscillations will be the main focus.

Within the stellar interior, radiation can be trapped due to the high opacity of the
surrounding ionised material, a necessary property for stars driven by the κ mechanism.
The build of radiation pressure causes the star to expand past the equilibrium radius until
it eventually collapses again once the pressure is reduced, as the radiation can now escape.

Solar-like oscillators are stars that exhibit the same oscillation modes as the Sun. Their
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placement on the HR diagram is shown in Fig.1. These stars are intrinsically stable and
as a result the oscillations are not self-excited. The excitation of these modes is by the
broad frequency range turbulence in the near surface convective regions of the star. This
random excitation is known as the stochastic mechanism and is only present in stars
with near surface convective zones. The stochastic mechanism can drive some waves
towards resonance, whereas in others it can cause damping of the wave. As a result, the
luminosity changes for solar-like oscillators are significantly smaller than that observed
from other variables, such as κ mechanism oscillators. As a comparison, κ driven oscillators
such as Cepheid variables show fractional luminosity variations of 10%, whereas solar-like
oscillators have magnitude variations of parts per million.

Oscillations in Stars

Oscillation Modes

The two types of standing wave oscillations within a star are called g (gravity) and p
(pressure) modes. In gravity modes the restoring force for the oscillation is the gradient of
the gravitational acceleration within the star, they are also known as buoyancy waves. A
parcel of gas within a star will rise if the material is less dense than of its surroundings.
The g mode oscillations are present within the centre of stars as the rising parcel of gas will
eventually become denser than its surroundings and will therefore sink. This continuous
motion from the parcel of gas produces these g mode oscillations. A property of this
motion is that there can be no pure radial motion, oscillation through the star centre, as
the parcel of gas displaces surrounding material in all directions each cycle. g modes are
observationally present within more evolved, or more massive, stars than that of the Sun.

In pressure modes the restoring force is the pressure gradient within the star. p modes
are the acoustic waves excited by the stochastic turbulence of the near-surface convection
zones. These acoustic oscillations can be trapped within a star setting up standing waves,
resonances, that can be either radial, causing the star to periodically expand and contract
keeping spherical symmetry, or non-radial, causing deviations from the spherical symmetry
of the star. The oscillations can be described by spherical harmonics, with the parameters;
l, m and n.

l is the angular degree of modes and describes the number of oscillation nodes on the
stellar surface. Modes with different degree, l, is plotted on Fig. 2. It can also be used to
give the horizontal wavelength, the wavelength that is parallel to the stellar surface from
the sound waves, λh = 2πR/L where L =

√
l(l − 1). Oscillations with an angular degree

of l= 0 are radial modes, or fundamental modes, and those with l>0 are non-radial modes.
l also indicates the depth at which the waves will penetrate too, where a lower value of l
corresponds to a greater wavelength, thus a greater depth. Each value of l therefore probes
a different cavity of the star, the size of which is the depth of the penetrating wave.

The azimuthal order m, gives a measure to the number of surface nodes that cross the
stars equator. The value of m is given by -l<m <l. The frequencies of m are degenerate and
are lifted by the rotation of the star. Oscillations with a velocity component in the rotation
direction will be moving pro-grade, whereas oscillations with a velocity component against
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Figure 2: Internal ray diagram of five p mode oscillations of various angular degree,
l. The size of each cavity is dependent on the value of l, the modes represented are
l = 0, 2, 20, 25 & 75.[9]

the rotation direction will be moving retrograde. This advection causes the oscillations to
be shifted to higher or lower angular frequencies, lifting the degeneracy. The magnitude
of this effect can be shown by ωn,l,m = ωn,l,0 + Ωm , where Ω is an average value of the
angular velocity within the cavity of which the waves are probing and ω is the angular
frequency of the wave. This relation is subject to several approximations such as slow
rotation of the star, small Coriolis force, and that the star remains spherical. Fast rotating
stars can cause distortions that change the equilibrium of the star.

The radial order, n, or overtone number describes the total number of nodes in the
radial direction. For solar-like oscillators, the frequencies observed suggest high overtone
modes, and so the value of n is generally large. For the Sun, the frequencies that show the
largest amplitudes have an overtone number of n = 20. Only low l modes are observed in
unresolved stars due to geometric cancellation effects, with l=3 being the highest mode
normally detected. In the Sun modes upto l=300 and in some case l=900 or higher. [5]

Frequency of Oscillations

Frequency of Maximum Power νmax

The Frequency of maximum power, νmax, is shown in Fig. 3.

Large Frequency Spacing ∆ν

It can be assumed that for the fundamental mode of a star, the mode that causes a
star to expand and contract while keeping spherical symmetry, the acoustic time scale is
equivalent to the dynamical time scale. The dynamical time scale for the Sun is given
by τdyn ∼ 1/

√
G〈ρ〉 , where 〈ρ〉 is the mean density of the star. The period of this mode

can be estimated from the time it takes the sound wave, τ , to travel across the stellar
diameter, D. By relating the mean sound speed of the wave 〈c〉 to fundamental properties
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Figure 3: Power spectra showing oscillation modes and fitted Gaussian envelope. Original
Chaplin et al. Ensemble Asteroseismology of Solar-Type Stars with the NASA Kepler
Mission, 2009

of an ideal gas, the sound travel time τ ∝ 〈ρ〉−0.5.

νf =
1

τ
=
〈c〉
D
∝ #langleρ〉0.5 (1)

For the Sun, the dynamical time scale is roughly one hour, giving a fundamental

frequency of Π = 2 ·
(
GM
R3

)−1/2
the inverse of which is ≈ 315µHz. However, observed

pulsations from the Sun have periods of a few minutes, giving νf ≈ 3000µHz. This would
suggest that the observations are high overtones (high n) of the fundamental mode. These
radial standing waves are analogous to the standing waves propagating within a 1-D pipe.
The wavelength of overtone n within an open ended pipe is λ = 2R

n+1 , where R is the length
of the pipe and as such, the radius of the star. We assume that the medium is homogeneous
and that the edge effects are ignored, meaning that the overtones, n, see the same sized
cavity. From this wavelength, the frequency of the fundamental and its overtones, the first
harmonic and higher, can be given as νn = cn/2R. This gives the definition of the large
frequency spacing between these successive overtones ν = c/2R. More formally the large
frequency spacing is better represented by the following;

∆ν =

(
2

∫ R

0

dr

c

)−1
(2)

This 1-D pipe solution can also be generalised for the spherical geometry of a star. For a
3-D pipe, the waves will no longer be plane waves, and so there will also be an additional
transverse component that moves at right angles to the radial axis, the non-radial modes.
The transverse waves will have their own set of overtones and can be described with
spherical harmonics.
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The general form for a uniform non-rotating sphere is,

νn,l = ∆ν0(n+
l

2
+ ε) + δν (3)

where η is a small factor of order unity, νn,l is the observed frequency at the given n and l,
and ∆ν0 is the large frequency separation. Equation 3 relies on an asymptotic relation
for p modes that states that all modes are approximately equally spaced in frequency,
assuming n >> l [12]. The large frequency separation ∆ν0 is the frequency difference
between modes of the same l but consecutive radial order n, see Fig. 4.

Relation of ∆ν to mean density 〈ρ〉

As Equation 2 shows, ∆ν is related to the sound travel time across the star. This can
easily be shown to relate the large frequency to the average density of the star, using the
speed of sound in an ideal gas, and hydrostatic equilibrium. The sound speed is c ∝

√
P/ρ,

where P is the pressure. Putting this back into the previous equation, and averaging over
the radius R leads to, (

∆ν ∝

√
〈ρ〉
〈P 〉
·R

)−1
(4)

The next step is apply averages to the equation of hydrostatic equilibrium, remembering
pressure decreases with increasing radius.

− 〈P 〉
R
∝ −M〈ρ〉

R2
(5)

Finally cancel factors of R and substitute in for mass and radius leads to the solution

∆ν ∝ 1

R

√
M

R
∝
√
〈ρ〉 (6)

Small Frequency Separation δν

The small separation (see Fig. 4) is defined as being the frequency difference between modes
of same order n but differing in l by 2, e.g. δν02 is the small frequency separation between
modes l = 0 and l = 2. This is a key asteroseismic parameter, as it allows information to
be extracted about compositional difference by radius in the star, and as such penetrate
further than the photosphere. Since different l modes see different sized cavities and the
lower l modes penetrate more deeply into the star, see figure 2, the frequency difference is
caused by the travel time, and as such composition of the region the lower l mode sees.
Since in general only l = 0 to l = 2 modes are detected in asteroseismology, in particular
this can be used to probe the cores of these stars, since l = 0 will pass through the core,
whilst l = 2 will be refracted before reaching the core. This ability to probe the core
also allows the evolutionary state, and so age of the star to be explored. An important
consequence of this is that stars that observationally are identical, such as evolved or
evolving stars can be accurately described.
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Figure 4: Zoomed power spectra showing with large ∆ν and small δν frequency spacings
indicated. Original Solar-like Oscillations: An Observational Perspective Bedding T.R.,
2011

Trapping Mechanism

Speaking of refraction, the trapping mechanism for oscillation modes should briefly be
discussed.To obtain standing waves within a star, the waves must be trapped. Radial modes
pass from one side of the star to the other by going through the star centre. Non-radial
modes have a traverse direction where their anti-nodes are connected to the stellar surface,
as shown in figure 2. The ray diagram shows two boundaries at which the wave is kept
trapped in the star, these are the upper and the lower boundaries, detailing the reflection
on the stellar surface and the refraction at some interior depth respectively. At the surface
the sudden decrease in density causes waves lower than the acoustic cut-off frequency νac
to be trapped and reflected at the boundary. The lower boundary of the mode, caused
by refraction, is due to the varying sound speed with depth, as c ∝

√
T where T is the

local temperature. This varying sound speed causes the wave to refract, definining the
lower boundary. Since the sound speed is also frequency dependent, different modes will
penetrate to different temperatures, and so depths. [10]

Scaling Relations

Given these asteroseismic parameters, it is important to see what other stellar parameters
can be extracted. Several parameters can be extracted using the relation in equation 6
and another standard relation, with all values normalised to solar values;

∆ν

∆ν�
=

√
ρ

ρ�
,

L

L�
=

(
R

R�

)2( T

T�

)4
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This leads to the the scaling relation;[7]

L

L�
=

(
M

M�

) 2
3
(
T

T�

)4( ∆ν

∆ν�

)− 4
3

(7)

however this relation will require an independent means to determine mass M , to allow
the calculation of luminosity L and radius R. To do this another asteroseismic parameter
extractable from the power, νmax, the frequency of maximum power, which is central
frequency of the gaussian modulating the spectra. A scaling relation for νmax was found
by Kjeldsen & Bedding 1995, which when combined with equation 6 leads to the final
scaling relation to determine mass.

νmax

νmax,�
=

g

g�

(
Teff
Teff,�

)−0.5
(8)

So far, an independent source for effective temperature has not been considered, but is
generally established by spectroscopic measurement.

M

M�
=

(
∆ν

∆ν�

)−4( νmax

νmax,�

)3( Teff
Teff,�

)1.5

(9)

With these scaling relations and an independent source of Teff , the project can progress,
and power spectra, along with stellar parameters can be determined.

Analysis

We were given Kepler light curves for 10 stars, that are all solar-like oscillators and expected
main-sequence (MS) stars. For each star we had one quarter of data, so 90 days. It is
all short cadence, which means an integration time of ∼59 seconds. For each of the light
curves obvious outliers were removed beforehand. We were not given the names of each
star, so for clarity, we named them ourselves, perhaps in an unconventional way, but the
translation from our names to the official names can be seen in the appendix. Figure 5
shows an example of one of the lightcurves that we worked with. This is for the star
named Tina and as expected for a solar-like oscillator with low amplitude pulsations there
is nothing to see except noise. We also chose to do the same analysis for a red giant that
is also a solar-like oscillator.

Power Spectrum

The first step in analyzing time series is to perform a fourier transform in order to move the
analysis to frequency domain instead of time domain. A fourier transform is fitting the time
series with periodic functions, e.g. sine functions. The better the fit for the specific sine
function, the more power that frequency will have. For this we use the programPeriod04,
which is very simple to use and can calculate the fourier spectrum rather fast. For solar-like
oscillators it is custom to plot the fourier spectrum as a power spectrum, which just means
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Figure 5: Kepler lightcurve for Tina.

that instead of amplitude vs. time, you plot power vs. time, where power is amplitude
squared. It is also custom to use µHz instead of cycles/day. Period04 plots the frequency
in cycles/day and not µHz, so this is changed, when we do the further analysis with another
program.

A fourier transform is a time expensive calculation, so it is worth considering how far
up in frequency the transform has to go. The Nyquist frequency is the highest frequency
that can contain relevant information. It is half the sampling frequency, which is the
inverse of the time steps:

fN = 1/2fs = 1/(2∆T ) (10)

Everything above the Nyquist frequency will only be an alias of the information below
the Nyquist frequency. Because our data is short cadence (short time steps) the Nyquist
frequency is very high, fN ∼ 1/(2 · 59s) = 8474µHz, and it is not necessary to calculate
the power spectrum all the way up to the Nyquist frequency. This would also take a very
long time.

Figure 6 shows an example of a power spectrum. This is for the star named Jørgen.
At low frequencies the granulation noise dominates. From ∼ 3000µHz and up there is no
more information in this power spectrum. The excited modes are visible around 2165µHz.
This frequency is called the frequency of maximum power, denoted as νmax. We calculated
this frequency by assuming a symmetrical distribution and then simply taking the average
of the excited modes that we identified. This way of finding νmax is not so precise, but
in general, νmax is not a very precise parameter and therefore we tried to avoid it in out
analysis, but it was not always possible, see analysis section. If this analysis should be
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Figure 6: A power spectrum for Jørgen.

done more carefully, it would be a good approach to instead fit a gaussian envelope to the
excited modes and thereby get the frequency of maximum power.

Echelle Diagram

The next step in the analysis is to determine the large frequency separation, ∆ν and the
small frequency separation, δν. As mentioned in the previous section, the large separation
is the difference between two l=0 modes of consecutive radial order, n. The small separation
is the different between the l=2 and l=0 mode of the same radial order. So first, we need
to identify the modes. Figure 7 is a zoom around νmax for the star named Rhita. This
star was the star, where the mode identification was easiest. For some of the stars it was
much more difficult, which also adds a bigger uncertainty on the results. Two of each
mode with different degree are marked, and the pattern clearly repeats. Period04 lets you
choose each frequency for the modes you identify by simply clicking on the peak on the
plot. For some of the stars however, the power spectra are not nearly as nice as that in
Fig. 7. Figure 8 shows a zoom around the excited modes in the power spectrum for the star
named Hans. Here, it was very difficult to determine the position of the center of the peaks
by eye. To help aid the eye, we calculated the power spectrum with a lower resolution,
which results in a smoothing of the spectrum, and this makes it easier to determine the
center of the peak, but the precision is still much lower than for the nicer power spectra,
e.g. for Rhita. If the analysis has to be more thorough and precise, it would be better to
fit a Lorentzian profile to the peaks and with that determine the center of the peak.

To find ∆ν, we plot the frequency of l=0 modes of consecutive radial order, n. The slope
is then the large frequency separation. This is then used to cut up the power spectrum



11

Figure 7: A zoom around νmax for Rhita. This shows the identification of two of each
l=0, l=1 and l=2 mode.

Figure 8: A zoom around νmax for Hans. As in Fig. 7, two modes of each degree is
marked, but now the frequency of the center of the peak is a lot more difficult to determine.
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Figure 9: The echelle diagram for Rhita, the ’nice’ star.

Figure 10: Left: The echelle diagram for Frank with strange behaviour from the l=0
mode. Right: The echelle diagram for Vichi with three l=3 modes identified and the l=1
modes seems to be mixed.

in equally sized pieces that is stacked on top of each other. This is called an echelle
diagram, where the frequency is plotted against the frequency modulus the large frequency
separation. An example for Rhita can be seen on the left in figure 9. This clearly shows
the ridges that form by modes of same degree, l. This was the most well-behaved star we
analyzed, two examples of less well-behaved stars is in Fig. 10. On the left is the echelle
diagram for the star named Frank, where the l=1 mode shows some strange behaviour. On
the right is the echelle diagram for the star named Vichi, where we were able to identify
three l=3 modes and the l=1 mode seems to be mixed.

As mentioned before, the small frequency separation, δν, is the distance between the
l=0 and l=2 modes. This can be determined from the echelle diagram. We calculated
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Table 1: Asteroseismic parameters for all stars. Brandon is the Red Giant star. The
errors are only internal errors.

Name νmax (µHz) ∆ν (µHz) δν (µHz) Literature ∆ν (µHz)1

Hans 1131 ± 44 60.5 ± 0.1 5.4 ± 0.3 60.8 ± 0.2
Jørgen 2156 ± 8 103.7 ± 0.1 6.5 ± 0.4 104.3 ± 0.3
Kai 2258 ± 16 105.5 ± 0.1 7.9 ± 0.3 105.8 ± 0.3
Vichi 1148 ± 20 64.7 ± 0.1 5.3 ± 3.0·10−2 65.1 ± 0.2
Rhita 2350 ± 41 110.3 ± 2.0·10−3 5.2 ± 3.0·10−3 110.1 ± 0.3
Frank 859 ± 5 51.0 ± 1.0·10−2 4.8 ± 0.1 51.5 ± 0.2
Simon 3509 ± 46 149.2 ± 0.1 9.7 ± 0.2 149.1 ± 0.4
Tina 929 ± 11 53.3 ± 0.1 4.5 ± 0.2 54.0 ± 0.2
Regnar 1908 ± 18 88.8 ± 0.1 5.8 ± 0.2 87.9 ± 0.2
Karsten 1457 ± 14 74.9 ± 1.0·10−2 5.1 ± 0.3 74.7 ± 0.2
Brandon 54 ± 1 5.5 ± 0.1 0.8 ± 0.2 5.5 ± 0.1

1 Silva Aguirre et al (2012) and Chaplin et al (2013).

this in a very simple way, by just averaging the νmod∆ν for the l=2 modes and for the
corresponding l=0 modes of same radial order. Figure 9 and 10 shows how the precision on
this also varies. For the nice star, Rhita, on Fig. 9, the small frequency separation between
the l=0 and l=2 modes of same radial order, is very close to the same for all of them. For
some of the stars, e.g. Frank and Vichi, on Fig. 10 δν varies a bit more for different radial
orders.

The results from this analysis is shown for all stars in Table 2. It is noteworthy that
with our simple and rough approach to this analysis, we are still within 1% of the literature
values for the large separation for most of the stars. This is compared to other groups who
used more sophisticated methods, more data and also who have a much greater knowledge
about asteroseismology than we do after one week.

Stellar parameters

The mass determination is possible with the C-D-Diagram (White et al., 2011). Here it is
needed to plot the large seperation ∆ν on the x-axis and the small separation, δν, on the
y-axis. In Fig. 11 the C-D-diagram from White et al. (2011) is shown with the determined
large and small separation for our stars (red dots), CoRoT stars (orange triangles), ground
based observed stars (purple diamonds).

In the C-D-diagram, the stars evolve from top right to the bottom left. The C-D-
diagram shows different isochrones which shows the mass and age of stars depending on the
small and large separation. For five of the main sequence solar-like stars the determination
of mass and age is possible, the other stars are much more evolved and the determination
becomes more difficult. One of the red dots (the red giant star) is at the bottom left part
of the diagram. The determination of the mass and age is difficult for sub giants and red
giants. The problem occurs because of mode bumping for these types of stars. The evolving
process of these stars leads to expanding their convective envelope and so the p-modes
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Figure 11: C-D-diagram from White et al (2011) with our stars plotted as red dots.

decrease in frequency and the g-modes increase in frequency and create mixed modes. This
leads to high deviation from the asymptotic equation (1) and so to complications in the
measurement of the small separation δν. The metallicity strongly affects the isochrones
and the small and large separation. The C-D-diagram is made for near-solar metallicity.
For smaller large and small frequency separations (which occurs for more evolved stars) it
is no longer possible to accurately determine the mass and age from the C-D-diagram.

For the evolved stars, where the mass and age cannot be read off the C-D-diagram in
Fig. 11, we can use an approximated equation from Chaplin & Miglio (2013) to determine
the mass:

M

M�
=

(
∆ν

∆ν�

)−4( νmax

νmax,�

)(
T

T�

)3/2

(11)

For this we need the νmax, which, as mentioned in the previous section, is more uncertain
than the ∆ν and δν, which makes this way of determining the mass less accurate. The age
cannot be determined for these stars with the information we have available, and therefore
these values are missing in Table... with the results.

After the mass has been read of the C-D-diagram or calculated using νmax, the radius
can be found using:

R

R�
=

(
∆ν

∆ν�

)−2/3( M

M�

)1/3

(12)
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Table 2: Stellar parameters for all stars.

Name Teff (K) M (solar) Radius (solar) Luminosity (solar) Age (Gyr)

Hans 6270 1.4 1.92 5.1
Jørgen 6060 1.1 1.22 1.8 5.8
Kai 6340 1.1 1.22 2.2 3.9
Vichi 5740 1.0 1.63 2.6
Rhita 5720 1.0 1.13 1.2 9.6
Frank 6090 1.2 2.02 5.0
Simon 5360 0.9 0.92 0.6 5.9
Tina 6200 1.3 2.02 5.4
Regnar 6140 1.1 1.37 2.4 6.0
Karsten 6060 0.9 1.44 2.5
Brandon 4620 1.4 9.59 37.7

With this information, it is now possible to determine the luminosity of the stars:

L

L�
=

(
∆ν

∆ν�

)−4/3( M

M�

)2/3( T

T�

)4

(13)

For this we also need the temperature, which was given to us. The determined radius,
mass, luminosity and age for few stars are listed in Table....

Our analyzed main sequence solar-like stars have an effective temperature of ∼ 6000 K
and ∼ 1M�. The radii differ from one solar radius to two solar radii. For some, the age
could not be determined. In conclusion we now have mass, radius and luminosity and it is
possible to plot our stars in a HR Diagram with the given effective temperatures: Some of
our stars are G-type main sequence stars and some of them are evolved up the sub giant
branch. The red giant is also clearly positioned on the red giant branch. One can see that
our stars fits well into the HR-diagram. Qualitatively, this confirms that the determination
of the properties of the analyzed stars was successful.

Conclusion

With asteroseismology it is possible to determine the mass, radius, luminosity and age
of stars. In this work we used photometric data from the Kepler satellite for ten main
sequence stars and one red giant to determine the stellar parameters by identifying the
p-mode oscillations by hand. These modes allowed us to determine the large frequency
separation, ∆ν, which is the inverse sound travel time across a stellar diameter and sensitive
to the radius of the star, and the small frequency separation, δν, which is sensitive to the
structure of the core composition and thereby also the age. The large and small separation
was used to determine the mass and age of the main sequence stars using a C-D-diagram.
For five main sequence stars it was possible to determine the mass and age. The other
stars was too evolved to determine the mass and age with the C-D-Diagram. Instead we
used the given approximation by Chaplin & Miglio (2013) to identify the mass using the
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Figure 12: HR diagram with our stars. The yellow diamond is the Sun, the red diamond
is the red giant star and the grey diamonds are the 10 main sequence stars and sub giants.

frequency of maximum power, νmax. In the end we calculated the luminosity of the stars
and plotted them in an H-R-diagram. Our results for the large separation (and following
mass, age and radius) are in good agreement, within 1%, with results available in literature.
The accurate determination of stellar parameters are important in order to understand the
evolution of stars and moreover to determine more accurately the properties of celestial
bodies around these stars, such as the characterisation of exoplanets.
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Appendix

Table 3: Name conversions.

Name of files KIC name Our name

star0 KIC03632418 Hans
star1 KIC06106415 Jørgen
star2 KIC06225718 Kai
star3 KIC06442183 Vichi
star4 KIC06603624 Rhita
star5 KIC07976303 Frank
star6 KIC08006161 Simon
star7 KIC10068307 Tina
star8 KIC12009504 Regnar
star9 KIC12258514 Karsten
rgstar0 KIC02831788 Brandon
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