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Summary

As an excellent tool to study the structure of stars, asteroseismology has been
developed rapidly in recent decades. By investigating stellar oscillations, it
enables us to probe the interior of stars. Unlike the Sun, whose surface can
be resolved by small telescopes on the Earth or even our naked eyes (using
filters), other stars are observed as point sources without spatial information.
However, solar-like oscillations are detected in many red giant stars that have
large outer convection zones like the Sun does. Thanks to the high quality
and very long term observations by NASA’s space mission Kepler, numerous
excellent data of stars in different evolutionary stages are available for the study
of asteroseismology. Analyzing these data allows us to map indirectly deep inside
the stars.

The high-precision observation data from photometry and spectroscopy pro-
vide various stellar parameters that can be used as constraints on stellar evolu-
tionary codes. In return, the codes help to interpret the stars by simulating the
very complicated physical processes in different parts of the stars. Making use of
the pulsation codes that can compute oscillation frequencies and eigenfunctions
for models generated by evolutionary codes, allows us to connect the theoreti-
cal asteroseismology with practical seismic parameters. With the help of these
codes, our understanding of the inner structure and evolution of red giant stars
grows as the science of asteroseismology develops. The special nature of mixed
modes that have p-mode character in the outer part of stars and g-mode char-
acter in the core area, makes the investigation of stellar interior possible. The
occurrence of mixed modes brings in various variations on the mode frequencies
and energy inputs which are products of the stellar evolution. Mixed modes are
widely detected in Kepler data for evolved stars and hence detailed analysis of
the nature of avoided crossing and mode coupling become interesting subjects.

The work presented in this thesis focuses on data analysis, asteroseismic
modelling and asymptotic analysis of mixed modes in red giant stars. It is
demonstrated that the analysis of seismic data, especially the mixed modes,
can open a new window on the understanding of stellar evolution and inner
structure.
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Danske Resumé

Inden for de seneste årtier har asteroseismologi udviklet sig hurtigt og har vist
sig at være et fortrinligt redskab til at studere stjerners struktur. Ved at obser-
vere stjernernes svingninger er det muligt for os at undersøge stjernernes indre.
I modsætning til Solen, hvis overflade kan studeres med mindre teleskoper p̊a
Jorden eller endda ses med det blotte øje (ved hjælp af filtre), observeres andre
stjerner som punktkilder uden information om overfladestrukturer. Men man
har fundet sollignende svingninger i mange røde kæmpestjerner med store ydre
konvektionszoner ligesom Solens. Som et resultat af længerevarende observa-
tioner af høj kvalitet foretaget under NASAs rummission Kepler er talrige og
fremragende data for stjerner i forskellige stadier af deres udvikling til r̊adighed
for asteroseismologi. Ved at analysere disse data f̊ar vi mulighed for at kortlægge
stjernernes dybeste indre.

De meget præcise observationsdata fra fotometri og spektroskopi bestemmer
visse af stjernernes egenskaber, der kan anvendes til at efterprøve programmer til
beregning af stjernernes udvikling. Disse programmer bidrager til simulering og
forst̊aelse af de meget komplicerede fysiske processer i forskellige dele af stjern-
erne. Ved at bruge programmer der kan beregne svingningsfrekvenser og egen-
funktioner for de stjernemodeller, der produceres af stjerneudviklingsprogram-
merne, f̊ar vi mulighed for at relatere den teoretiske asteroseismologi til de ob-
serverede seismiske parametre. Gennem denne analyse forbedres vores forst̊aelse
af den indre struktur og udvikling af røde kæmpestjerner gennem den videre ud-
vikling af asteroseismologi.De særlige egenskaber ved hybride svingninger, der
har akustisk karakter i den ydre del af stjernerne og tyngdebølgekarakter i det
centrale omr̊ade, muliggør undersøgelse af stjernernes indre. Forekomsten af hy-
bride svingninger fører til specifikke egenskaber ved de observerede frekvenser
og svingningsamplituder, som er bestemt af stjernernes udvikling. Hybride sv-
ingninger er et generelt træk i observationerne fra Kepler af udviklede stjerner,
og det gør studiet af koblingen mellem svingninger af forskellig karakter til in-
teressante emner for disse stjerner.

Arbejdet præsenteret i denne afhandling fokuserer p̊a dataanalyse, aster-
oseismiske modellering og asymptotisk analyse af hybride svingninger i røde
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kæmpestjerner. Det bliver p̊avist, at analysen af seismiske data, især for de
hybride svingninger, åbner et nyt vindue for forst̊aelsen af stjernernes udvikling
og indre struktur.
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Chapter 1

Introduction

Stars are of great importance among all the objects which modern astrophysics
deals with, because they are the source of life. The effort to understand the
nature of stars never stopped for thousands of years. A star undergoes a series
of radical changes during its lifetime which depend on the mass of the star. The
star is powered by the means of nuclear fusion for most of its life. The process
fuses different chemical atoms at different evolution stage, initially starts with
the fusion of hydrogen and then with heavier elements later on. Through these
processes, the size as well as the structure of the star changes dramatically caus-
ing its brightness also to vary. On a much shorter timescale, some stars change
their luminosity very rapidly and intrinsically, because they periodically swell
and shrink, such as variable stars. Our own Sun is the most well studied vari-
able star, based on which a science known as Helioseismology was created. Most
of the observed solar oscillations have periods around 5 minutes and they are
excited in the outer-layer convection zone. Studying solar-like oscillations is an
expanded branch of helioseismology and an important area of asteroseismology.

The observation of solar-like stars can be performed spectroscopically and
photometrically. Spectroscopy refers to the measurement of radiation intensity
as a function of wavelength. It is an important tool that allows us for the
derivation of the atmospheric parameters such as the surface gravity and the
effective temperature, for the spectral classification and for the estimates of the
chemical abundances in the stellar atmosphere. Additionally, the most valuable
quantity derived from a time series of stellar spectra is the radial velocity.
Photometry is the technique related to the measurement of radiation intensity
over large wavelength. In asteroseismology, the observed photometric time series
are used to determine pulsation frequencies of stars very precisely.

In the late 19th century, the Danish astronomer Ejnar Hertzsprung noted
that stars described with narrow lines tended to have smaller proper motions
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MS
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RG

Figure 1.1: The evolutionary track of a model simulated for the Sun. The track
is shown in the form of luminosity against effective temperature (a kind of H-R
diagram). Three typical models at different evolution stages are coloured as blue
(main sequence, MS), orange (sub-giant branch, SG) and red (ascending-branch
red giant, RG). Especially the blue dot shows the location of the Sun.

than the others of the same spectral classification. He took this as an indication
of greater luminosity for the narrow-line stars, and computed secular parallaxes
for several groups of these, allowing him to estimate their absolute magnitude.
However, the groups of stars he computed parallaxes for do not include the
supergiants that are too far to obtain measure their parallaxes at that time
and hence no meaningful estimate of their absolute magnitude existed prior
to that work. Later in 1913, the American astronomer Henry Norris Russell’s
work included those supergiants and stars from the Hyades (a nearby open
cluster), and several moving groups and measured their parallaxes using the
method called moving cluster method to obtain absolute magnitudes for those
stars. The diagram of stellar absolute magnitudes versus the spectral types
represents a major step towards an understanding of stellar evolution and it is
well know as Hertzsprung-Russell diagram (H-R diagram). There are several
other forms of H-R diagram, such as ones showing the relationship between the
star’s luminosity and effective temperature.
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1.1 Stellar Evolution

Like all the living creatures do, stars also go through the complete process
of life from cradle to grave, or in astronomy it is from protostar to stellar
remnants. Stellar evolution begins with the formation of the protostar, which is
fulfilled by the gravitational collapse of a giant molecular cloud in the interstellar
medium. The initial composition of a protostar is homogenous throughout,
including about 70% of hydrogen. If the initial mass of the star is large enough,
it will end up as a pre-main-sequence star, otherwise it doesn’t ignite Hydrogen
fusion and ends up as a brown dwarf. During the collapse, the energy of this
pre-main-sequence star is generated by gravitational contraction until the core
reaches the temperature required to start the core hydrogen burning and to enter
the main-sequence stage. Given the fact that the evolution progress of a star
depends greatly on the initial mass, it is reasonable for me to focus on stars with
masses around the Solar mass as I am studying the asteroseismology of solar-
like oscillations in red giant stars. Figure 1.1 shows the evolutionary track of a
model simulated for the Sun, starting from the main sequence to the red giant.
The track is plotted in the form of a H-R diagram, the luminosity against the
effective temperature, and gives us idea of how the model evolves illustratively.
Three models at different ages are picked out to represent different evolution
stages, main sequence, sub-giant branch and ascending-branch red giant. The
hydrogen content X of these models as well as the zero-age model are plotted
in Figure 1.2, from which we can see that at the beginning of this evolution
sequence, the abundance of hydrogen is uniform all through the star.

For main-sequence stars of roughly a solar mass, the central core of the star
fuses hydrogen atoms into helium through proton-proton chain reactions which
do not establish a steep temperature gradient in the core area. As shown by
the blue dotted line in Figure 1.2, the hydrogen abundance X of the inner part
of model MS increases smoothly with radius. According to the Schwarzschild
criterion, the small temperature gradient in these low mass stars contributes to
increase the convective stability and hence radiation dominates the cores. In
the outer parts of these stars the gas is cool enough to be only partially ionized
so that convection dominates in that region. In the sun, about 2/3 of its volume
is covered by a convective envelope. Another set of fusion reaction, by which
hydrogen can be also converted to helium, called CNO cycle (for carbon nitrogen
oxygen) dominates the generation of energy in stars slightly more massive than
the Sun. In the CNO cycle, the energy generation rate depends strongly on the
temperature, which leads to a steep temperature gradient in the core area. Due
to the strong sensitivity of temperature, convection is the dominant mode of
energy transport in the core (details given in Section 1.3.4).

When these roughly one solar mass stars evolve into the post-main-sequence
stage, after a short sub-giant phase. they reach the red giant branch. After
the depletion of the hydrogen in the central core, the temperature in the core



CHAPTER 1. INTRODUCTION 4

is not high enough to ignite the helium fused from hydrogen during the main-
sequence phase, but it is high enough to move the hydrogen burning into a
shell around the core (see the orange dashed line in Figure 1.2). This causes
the core to contract which increases the central temperature but the envelope
starts to swell. A sub-giant star is slightly brighter than its main sequence
counterpart but it cools down and changes colour rapidly as it moves to the
right edge in the Hertzsprung-Russell diagrams. As the central contraction goes
on, the core becomes denser and denser which generates a degenerated but not
yet ignited helium core. The decreasing speed of the temperature slows down
but the luminosity grows quickly, as the star ascends the red giant branch. At
this time, the star is still burning hydrogen in the core shell, but the outer layer
carry the energy to the surface by means of convection. This causes a uniform of
X all through the convection zone leaving the bottom of the zone at the position
of around 0.24 m/M (see the large gradient of X of the red line in Figure 1.2).

Figure 1.2: Hydrogen content X versus fractional mass m/M for four models in
the solar model evolution sequence. The the blue dotted line for model MS, the
orange dashed line for model SG and the red dash-dotted line for model RG in
Figure 1.1, and the black solid line for the zero-age model. Only the inner 40%
in mass of the models is shown.

As the hydrogen is consumed in the shell, the core absorbs the produced
helium, making it even denser and contract further. Eventually this leads to
the ignition of helium in the core. If the helium in the core is degenerate, the
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core is supported by the electron degeneracy pressure, a thermal runaway occurs
meaning that the star is undergoing a helium flash at the tip of red giant branch.
The star then moves down to the horizontal branch with a helium-burning core
as well as a hydrogen-burning shell. These stars are called red clump stars,
hotter but less luminous than red giant stars. After the helium is exhausted
in the core, the fusion is continued in a shell around the carbon-oxygen core.
The star begins its life on the asymptotic giant branch, which is parallel to the
red giant branch in the Hertzsprung-Russell diagram, but spends less time on
this branch because of a more efficient energy generation. At this time, for a
low mass star, its core may never reach temperature high enough to ignite the
carbon and oxygen. The evolution of these low mass stars ends at this point
and the following phases are quite complicated and controversial. Since my
project is mainly focused on solar-like oscillations which can only be observed
in main-sequence and red giant stars, so these late evolutionary stages are not
evoked in this thesis.

1.2 Solar-like Oscillations

Solar-like oscillations are oscillations in other stars that are excited in a similar
way as those in the Sun. Stars have solar-like oscillations are also called solar-like
stars. Basically, a star is a big gaseous ball and oscillates in many different modes
excited by different mechanisms. The amplitudes of the oscillations depend on
the excitation and damping processes, while the frequencies are determined by
some properties of the star interior, such as temperature and density. Measuring
the amplitudes and frequencies of these oscillations provides us opportunities
to understand the stellar inner structure and evolution that no any other way
can do. The best-studied object of oscillating stars is our Sun, which oscillates
in thousands of different modes simultaneously. These modes can be essentially
divided into two categories by their restoring forces: gravity and acoustic modes.

For the gravity modes, or g modes, buoyancy is the restoring force and
the gas motions are primarily horizontal. The gravity modes are usually low
frequency modes and travel in the inner part of the star. Usually they are
confined in the stellar interior below the convection zone, which makes them
impossible to be observed at the surface. For the pressure modes, or p modes,
pressure is their restoring force and they have gas motions that are vertical.
Their dynamics depend on the variation of the sound speed in the star. The
p modes normally have higher frequencies than g modes, and have very large
amplitudes on the surface, so they are observable. In the Sun, the p modes have
frequencies larger than 1 mHz and have the strongest signals around 3 mHz, for
which they are called 5 minutes oscillations. Thousands of p modes have been
detected. In the outer layer of the Sun, the convective envelope covers 70% of
its volume. The g modes are trapped only in the core area and have frequencies
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less than 0.4 mHz. The gravity waves carry important information of the stellar
interior, though they are very hard to be detected. The Sun has been closely
observed for decades. Observations of other solar-like stars requires very high
precision instruments and very long term observing time.

Solar-like oscillations are expected to be excited in all stars with outer con-
vection envelopes. Stars having large outer convection zones are indeed the
lowest mass main sequence stars up to objects near the cool edge of the clas-
sical instability strip with mass around 1.6 M⊙ (Christensen-Dalsgaard, 1982;
Christensen-Dalsgaard & Frandsen, 1983; Houdek et al., 1999). The driving
mechanism that operates in the Sun and other solar-like stars , including some
low mass cool red giant stars, is the stochastic driving mechanism. Stochas-
tic excitation of oscillations in the solar atmosphere was first studied by Stein
(1968), followed by Goldreich & Keeley (1977) who considered the application
to the excitation of normal modes. Batchelor (1956) introduced the basics prop-
erties of damped oscillations excited by homogeneous turbulence. The power
spectrum of a single mode of frequency ω0 and damping rate η, is approximately

P (ω) ≃
1

4ω2
0

Pf (ω)

(ω − ω0)2 + η2
, (1.1)

where Pf (ω) is the power spectrum of the turbulent forcing. If the forcing spec-
trum varies slowly with frequency the result is a stochastic function modulated
by a Lorentzian envelope, with a full width at half at maximum of 2η. It is
obviously possible to determine the damping rate η from the fitted Lorentzian
spectrum. Due to the stochastic nature of the excitation, the amplitude of a
mode changes with time. However, the excitation of a certain mode is deter-
mined by the very property of the mode, and the amplitude depends on the
stochastic energy input from convection and damping in the near-surface where
convection is most vigorous. The mean square amplitude is approximated by
(Chaplin et al., 2005)

〈

A2
〉

≃
1

E|η|

Pf (ω)

E
, (1.2)

where A can be the outcome from observation, such as the surface velocity from
spectroscopy and the relative intensity variation, Pf(ω) describes the energy
input from convection (Christensen-Dalsgaard, 2012) and depends on the fre-
quency but little on mode degree (Houdek, 2010). The normalized mode E
inertia (Dziembowski et al., 2001) is given by

E =

∫ R
0

(

ξ2r + L2ξ2h
)

ρr2dr

Mξr(R)2
, (1.3)

where ρ is the density; r is the distance to the centre; M is the stellar mass;
L is a degree related coefficient which will be given later; ξr and ξh are the
radial and horizontal components of oscillation displacement. Normally where
the damping rate is dominated by the near-surface layers it follows that |η|E is
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independent of E at constant frequency. Therefore, the mean square amplitude
is proportional to E−1 at constant frequency. In the case of red giant stars,
large variations in E is usually seen over a narrow frequency range, for the
mixed modes which will be introduced in Section 4.1. The inertia of g modes
are expected to be larger than that of p modes, because they normally travel in
denser layers of the star. Basically, higher amplitudes lead to higher visibilities
of the modes and hence the likelihood to detect them.

Instead of using the amplitude, Chaplin et al. (2005) noted that the ability
to extract a oscillatory mode from the power spectrum depends on the peak
height H , which is related to the mean square amplitude of the mode by

〈

A2
〉

= |η|H , (1.4)

because the damping rate determines the peak width. Since
〈

A2
〉

and |η| both
are proportional to E−1 if the damping is mainly dominated by the near-surface
layers, from Eq. (1.4) the peak hight H is independent of E, which means
that all modes in a given frequency interval are excited to almost the same
height. However, in reality, the observations are only for a finite time T which
is typically shorter than the lifetime τ of the g-dominated modes in a red giant
star. In the case of T ≪ τ , the resulting peaks in the power density spectrum has
a width proportional to T −1, i.e., that they are detected with a correspondingly
smaller peak hight, which is very likely decrease the mode visibility. Fletcher et
al. (2006) proposed the relation between H and T as

H ∝

〈

A2
〉

|η|+ 2/T
, (1.5)

which indicates that longer observation time can help discover more oscillation
modes. Thanks to the long-term and high quality of the photometry data from
Kepler and CoRoT, solar-like oscillations have been detected and analysed in
many stars (e.g. Hekker et al., 2009; Bedding et al., 2010; Huber et al., 2010;
Jiang et al., 2011; Mathur et al., 2011; Mosser et al., 2011; Baudin et al., 2012;
Kallinger et al., 2012). The detail properties of observed solar-like oscillations
will be introduced in the following sections.

1.3 Asymptotic Theory of Stellar Oscillations

We know there are thousands of oscillation modes existing in the Sun. They
oscillate with different frequencies and having different behaviour in different
regions. So how do we specify the modes?
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1.3.1 Oscillations in three-dimension

Three quantum numbers are used to specify the oscillation modes: n, called
the radial order, is related the number of radial nodes; l specifies the number
of surface nodes and is called the degree of the mode; m is the azimuthal order
of the mode, where |m| specifies the number of longitudinal lines among the
surface nodes. It is obvious that the values of m range from −l to +l, and
therefore there are 2l + 1 modes for each degree l. Figure 1.3 presents a set of
modes with different quantum numbers.

The simplest modes are the modes with l = 0, meaning there is no surface
node, and are called radial modes. The radial modes make the star swell and
shrink, heat and cool, as a whole ball spherically and symmetrically. In these
modes the star has the core as a node and the surface as a displacement antinode.
The nth overtone radial mode has n radial nodes which are concentric shells
within the star (see the radial mode case in Figure 1.3).

Modes that have l > 0 are nonradial modes. Oscillation waves of high-degree
nonradial modes can be very complicated and the simplest nonradial mode is
the axisymmetric dipole modes, i.e., the mode with l = 1,m = 0. In this mode
the star has its equator as a node, which makes one hemisphere swells up while
the other hemisphere shrinks and vice versa. In this way, from the observers’
point of view, the star looks like moving up and down in space. Modes with
two surface nodes are called quadrupole modes. For the l = 2,m = 0 mode
the nodes lie at latitudes ±35◦ (see Appendix B of Aerts et al. (2010) for the
position of nodal lines of different modes). The poles of this mode swell up and
heat up while the equator shrinks and cools, then vice versa. From Figure 1.3
it is obvious that the higher degree l of modes, the more sectors or zones will
divide the stellar surface, with adjacent regions having opposite waving direction
and opposite sign in intensity or velocity. As a result, the observed intensity
or velocity, which represents the integrated quantities over the stellar surface,
tends to be partially cancelled out. Therefore modes with higher degrees must
be more difficult to detect than those with lower degrees. This is the so-called
partial cancellation. Radial modes do not suffer from partial cancellation and
their peak height reach about twice as high as a l = 2 modes. Modes with
degrees higher than 2 are very rare to be observed.

The m specifies the number of longitudinal nodal lines and |m| ≤ l, so for a
spherically symmetric star the frequencies of all 2l + 1 members of a multiplet
are the same, if the star is not rotating. However, in the co-rotating frame of
reference frame of the star, rotation leads to deviations from spherical symmetry
which therefore lift this frequency degeneracy. The prograde modes travelling
in the same direction as rotation have frequencies a little smaller than



CHAPTER 1. INTRODUCTION 9

Figure 1.3: Exhibition of modes with different l and m. The stellar parts that
have different movement directions are coloured differently. The top one shows
the case of radial mode with couple of nodes inside the star. The other rows
show the modes with different l. The second row is for dipolar modes, the left
one is the case of l = 1 and m = 0, while the right one is l = 1 and m = ±1. The
third row is for quadruple modes, and from left to the right showsm = 0,±1,±2.
Similarly the last row shows the set of octupole modes, with m = 0,±1,±2 and
±3. The sign of m is distinguished by rotation direction. Credit to Jing Xu.

the m = 0 mode, while the retrograde modes with opposite direction of rotation
have slightly larger frequencies. This is due on the one hand by a Doppler
effect that shifts the pulsation frequency in the inertial frame, and on the other
hand by the Coriolis force that modifies the dynamics of pulsation modes, and
thereby their frequency. The effect of rotation in oscillation frequencies was first
investigated by Ledoux (1951). He developed the expression for the frequency
of modes accounting for the rotational splitting, for a uniformly rotating star,
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at first order, in the observer frame:

νnlm = νnl0 +m (1− Cnl)Ω/2π , (1.6)

where νnlm is the observed frequency for a mode specified by n, l,m, νnl0 is the
mode withm = 0, which is unaffected by rotation and is the unperturbed central
frequency of the multiplet, Cnl is a mode- and model-dependent coefficient (with
value smaller than 1), and Ω is the angular velocity making the corresponding
rotation frequency to be Ω/2π. Eq. (1.6) can be rewritten as

νnlm = νnl0 −mCnlΩ/2π+mΩ/2π , (1.7)

from which it is clear to see the reduction in frequency of prograde modes with
positive m by the Coriolis force, but also the increase in that from the rotation
frequency for the mode is propagating in the same direction of rotation. On
contrary, modes with negative m are propagating against the rotation, there-
fore their frequency in the observer’s frame are reduced by the rotation but
increased by Coriolis force. Eq. (1.6) describes a multiplet with 2l + 1 compo-
nents separated by the rotational splitting (1− Cnl)Ω/2π. However, uniform
rotation is not real in stars. The rotational splitting and the components of the
multiplet can be excited to different amplitudes, as a consequent, the observed
spectrum can be very complicated.

1.3.2 The asymptotic relation for p modes

The asymptotic relations are very important in asteroseismology. The frequen-
cies of low-degree (l) and high-order (n) p modes are regularly spaced, approx-
imately following the asymptotic relation (Tassoul, 1980; Gough, 1986):

νnl =
ωnl

2π
≃ ∆ν(n+ 1

2 l + ϵp)− dnl , (1.8)

where n is the radial order, l is the angular degree of the mode and ωnl is the
angular frequency. ∆ν is known as the large frequency separation, which is the
inverse sound travel time across the star, given by

∆ν =

(

2

∫ R

0

dr

c

)

−1

, (1.9)

where c is the sound speed and R is the surface radius, and the integration is
made over the distance r to the centre. In equation (1.8), ϵp is a frequency-
dependent phase shift due to the large gradient of the cut-off frequency near the
stellar surface and dnl is a correction called a small correction.

Figure 1.4 shows a power density spectrum of the flux variations observed
over a time span of 13 months for the red giant star KIC 11618103 by Kepler. It
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Figure 1.4: A power density spectrum of flux variations in the red giant star
KIC 11618103 for 13 months of data taken with the Kepler space mission. The
superimposed mode identification is provided by the modelling comparison. The
large frequency separations are clearly shown.

presents the “comb” of mode frequencies of p modes described by Eq. (1.8). The
very long-term observation of Kepler provides us the power spectrum with very
high resolution but low noise. The power density spectrum in Figure 1.4 shows
a bell-shaped envelope of power caused by the combination of damping and
excitation, with a maximum power at a frequency νmax locating in the centre.
Assuming the oscillations are adiabatic in an isothermal atmosphere, νmax is
approximately related to the acoustic cut-off frequency νac in the atmosphere
(Brown et al., 1991; Kjeldsen & Bedding, 1995),

νmax ∝ νac ∝ MR−2T−1/2
eff , (1.10)

where Teff is the effective temperature of the star. In the solar photosphere νac is
∼ 5.5 mHz (about 1.8 times the solar νmax). The scaling of Eq. (1.10) has been
supported by substantial observational results (e.g. Bedding & Kjeldsen, 2003;
Stello et al., 2008), though it is not well understood theoretically (Belkacem et
al., 2011).

The superimposed mode identification in Figure 1.4 was obtained after a
series of modelling work which is introduced in Section 2.2. The value of ∆ν is
illustrated as the frequency separation between two consecutive radial modes.
Unlike the radial and quadrupole modes that one of these modes corresponding
to one peak, a set of multiplet of dipole modes cluster closely in a very small fre-
quency range because of the effect of avoided crossing (discussed in Section 4.1).
These dipole modes are mixed modes and they dominate the oscillation modes
in evolved stars, such as in red giant stars. In the case of KIC 11618103, νmax

is around 106 µHz and ∆ν around 9.37 µHz. To a good approximation, ∆ν is
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proportional to the square root of the mean stellar density (Ulrich, 1986), as

∆ν ∝ M1/2R−3/2 , (1.11)

although White et al. (2011) pointed out that this scaling relation can be im-
proved by including a function of Teff . Eqs. (1.10) and (1.11) can be rewritten
as scaling relations from the accurate observed solar parameters (Kjeldsen &
Bedding, 1995),

νmax

νmax,⊙
≃

(

M

M⊙

)(

R

R⊙

)

−2( Teff

Teff,⊙

)

−1/2

(1.12)

∆ν

∆ν⊙

≃

(

M

M⊙

)1/2( R

R⊙

)

−3/2

. (1.13)

In asteroseismology Eqs. (1.12) and (1.13) are widely used to approximate the
radius and mass of a star with a little rearrangements to the equations

R

R⊙

≃

(

∆ν

∆ν⊙

)

−2( νmax

νmax,⊙

)(

Teff

Teff,⊙

)1/2

(1.14)

M

M⊙

≃

(

∆ν

∆ν⊙

)

−4( νmax

νmax,⊙

)3( Teff

Teff,⊙

)3/2

. (1.15)

Since ∆ν, νmax and Teff can be obtained from observation, the radius and mass
of a solar-like star may be easily estimated with the help of the well-known Solar
parameters. The scaling relations give very good estimates for less evolved stars
(Bedding & Kjeldsen, 2003), while Stello et al. (2008) have shown that they also
hold for stars on the giant branch, although with larger uncertainties.

1.3.3 The asymptotic relation for g modes

Likewise, the periods of g modes satisfy an asymptotic relation (Tassoul, 1980):

Πnl =
2π

ωnl
≃ ∆Π (n+ ϵg) , (1.16)

where ϵg is again a phase shift, n being the radial order and

∆Π =
2π2

L

(
∫ r2

r1

N
dr

r

)

−1

, (1.17)

where L =
√

l(l + 1), N is the Brunt-Väisälä frequency (or buoyancy frequency)
and the integral is over the cavity where the g mode is trapped. However, the



CHAPTER 1. INTRODUCTION 13

asymptotic relations for both p and g modes are only valid for high-order modes
(n ≫ l). It is obvious that the periods of g modes are equally separated by ∆Π,
known as the period spacing. The definition of N is given by

N2 = g

(

1

Γ 1p

dp

dr
−

1

ρ

dρ

dr

)

, (1.18)

where p is the pressure, and

Γ1 =

(

∂ ln p

∂ ln ρ

)

ad

(1.19)

is the adiabatic exponent (Cox, 1968; Weiss et al., 2004). The physical signifi-
cance of N is well discussed in Aerts et al. (2010), Chapter 3. The convective
stability, which is also the oscillatory case, requires that N2 > 0. In this case,
buoyancy forces the fluid element into an oscillation around the equilibrium.
These oscillatory waves are indeed the internal gravity waves. In evolved stars
the very compact core leads to a high value of g and hence N in the centre
area of the star, such that oscillatory modes may have g-mode character in the
interior while p-mode character in the outer part of the star. We will come back
to discuss this in Section 1.4.

On contrary, N2 is important to form a convective core in evolved star (see
detailed discussion of convection in Section 1.3.4). In a helium-burning red
clump star, a convective core is developed very close to the onset of central
helium burning. The value of N2 becomes negative in the convective core area
and hence the period spacing ∆Π is much higher than that in the ascending-
branch stage. In this way, we can distinguish red giants and clump stars based
on the period spacings of modes (Bedding et al., 2011).

1.3.4 Convection

Presumably the ideal gas law is approximately valid for a fully ionized gas in
the interior of cool stars, as

p =
kBρT

µmu
, (1.20)

where kB is Boltzmann’s constant, T is the temperature, mu is the atomic mass
unit and µ is the mean molecular weight determined solely by the composition.
By using Eq. (1.20), N2 can be rewritten as

N2 ≃
g2ρ

p
(∇ad −∇+∇µ) , (1.21)
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where

∇ =
d lnT

d ln p
, ∇ad =

(

∂ lnT

∂ ln p

)

ad

, ∇µ =
d lnµ

d ln p
. (1.22)

The condition for convective instability, N2 < 0, becomes that

∇ > ∇ad +∇µ , (1.23)

which is know as the Ledoux criterion of convective instability. Note that ∇µ

provides positive contribution to the stability, because typically µ increases with
decreasing r and hence increasing p. However, since the chemical material is
mixed in the convection region causing zero ∇µ which would make the region
become stable according to the Ledoux criterion. Such complications of ∇µ mo-
tive the use of Schwarzschild criterion in a layer the that all energy is transferred
by radiation, ∇ = ∇rad, which is

∇rad > ∇ad (1.24)

for an unstable region. The radiative temperature gradient is given by

∇rad =
3

16πac̃G

κp

T 4

L(r)

m(r)
. (1.25)

where a is the radiation density constant, c̃ is the speed of light, κ is the opacity,
G is gravitational constant, L and m are the luminosity and mass, both as a
function of r. However, in convectively unstable regions part of the energy
is transported by convection, therefore the actual temperature gradient ∇ is
smaller than ∇rad. It also may be argued that a intermediate case exists,

∇ad +∇µ > ∇rad > ∇ad, (1.26)

such case is corresponding to the semiconvection motions.

From the Schwarzschild criterion and Eq. (1.25), we can summarize several
favourable conditions for convection:

1. Large opacities, which leads to large ∇rad;

2. Low γ, which leads to small ∇ad (in the case of idea gas γ = Γ1, then
∇ad = γ/Cp, Cp being the specific heat at constant pressure);

3. Partial ionisation zones, which brings γ close to 1 and hence small ∇ad

(∇ad = 1− 1/γ);

4. Strongly temperature-dependent energy generation, such as the CNO cy-
cle, which leads to large ∇rad.

The detailed effects of the convective instability remain uncertain due to vari-
ous complications. Models are often computed applying many approximations,
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a typical example is the mixing-length formulation, which makes use of the
mixing-length parameter to describe the convective flux, velocity, and tempera-
ture gradients of the convective elements and stellar medium. The mixing-length
parameter is defined to be proportional to the local pressure scale height, and
the mixing-length parameter must be determined by comparing the stellar mod-
els to some calibrator, usually the Sun. No strong arguments exist to suggest
that the mixing-length parameter is the same in all stars and at all evolution-
ary phases. An analytical, non-local, time-dependent sub-sonic solution for the
convective energy transport that does not depend on any free parameter was
discussed by Pasetto et al. (2014).

1.4 Trapping of p and g modes

The oscillation displacement δr can be separated into radial and horizontal
components, ξr and ξh,

δr = ξrar + ξh (1.27)

where ar is a unit vector directed outward. Unno et al. (1989) introduced two
variables v and w related to the displacement components as

v = ρ1/2cr

(
∣

∣

∣

∣

1−
S2
l

ω2

∣

∣

∣

∣

)−1/2

ξr (1.28)

and
w = ρ1/2r2ω2

(

|N2 − ω2|
)

−1/2
ξh, (1.29)

where ω is the angular frequency of a mode. Neglecting the perturbation to the
gravitational potential (the so-called Cowling approximation; Cowling, 1941),
the two variables v and w each approximately satisfy a second-order differential
equation that describes the behaviour of oscillations,

d2v

dr2
+K2v = 0 (1.30)

and
d2w

dr2
+K2w = 0 (1.31)

with K defined by

K2 ≈
ω2

c2

(

1−
S2
l

ω2

)(

1−
N2

ω2

)

. (1.32)

Here K2 is approximated by ignoring the acoustic cut-off frequency term that
is generally small in the stellar interior and large near the surface. In equations
(1.28) and (1.32), apart from N there is another characteristic frequency Sl,
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also known as the Lamb frequency,

S2
l =

l(l + 1)c2

r2
. (1.33)

Unno et al. (1989) solved the set of differential equations (1.30) and (1.31)
asymptotically to obtain v and w using the JWKB method (or Jeffreys, Wentzel,
Kramers and Brillouin; Gough 2007). The local behaviour v and w in Eqs. (1.28)
and (1.29) depends on the sign of K2. Where K2 > 0, they are locally oscil-
lating functions of r, and where K2 < 0 the solutions are locally exponentially
increasing or decreasing functions of r. The solutions will be discussed in more
detail in Section 4.1.3. Thus according to this description and Eq. (1.32) the
solutions oscillate as a function of r when

(o1) ω2 > N2 and ω2 > S2
l , (1.34)

(o2) ω2 < N2 and ω2 < S2
l , (1.35)

and they are exponential when

(e1) N2 > ω2 > S2
l , (1.36)

(e2) S2
l > ω2 > N2 , (1.37)

The two oscillatory-behaviour solutions, (o1) and (o2) corresponding to the
specific cases of acoustic and gravity waves in the star. Furthermore, the inter-
sections between ω and the two characteristic frequencies, N and Sl, constrain
the travelling regions for those two modes. The so-called propagation diagram
of the model MS is plotted in Figure 1.5, where the cyclic N and Sl are plotted
against radius fraction. According to the conditions of (o1) and (o2), the red
bar indicates the p mode frequency region where ω is greater than both N and
Sl, while the blue bar shows the g mode frequency region where ω is smaller
than the two characteristic frequencies. The two coloured bars also confine the
depth of trapping areas in the radial direction for the two types of waves.

For the regions that satisfy the exponential-behaviour solutions, (e1) and
(e2), they are often the evanescent region, meaning that the mode is evanescent
in the given region. The evanescent region is of great important for the analysis
of mixed modes, detailed discussion will be given in Section 4.1.1.

1.5 Outline of this thesis

All the work presented in this thesis has done with the purpose of trying to
understand the seismology of red giant stars, theoretically as well as practically.
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Figure 1.5: The so-called propagation diagram of the model MS in Figure 1.1
plotted as Buoyancy frequency N (continuous line) and Lamb frequency Sl

(discontinuous lines for degree 1, 5 and 10, as labelled so in the diagram) as
a function of the fractional radius r/R. The red bar shows the theoretical
frequency region for p modes, which is also the typical observed frequency region
for the Sun, while the blue bar shows the region for g modes. All the frequencies
are in cyclic form.

In Chapter 2, we start the discussion of the asteroseismology in red giant
stars practically by introducing the well-know space mission Kepler, which in-
tends to discover Earth-like planets orbiting other stars. We present our analysis
method for Kepler data that are used in our studies, including methods to treat
the photometric data and the power spectrum. In addition, we discuss fur-
ther how we extract the seismic parameters, such as ∆ν, νmax, individual mode
frequencies and so on, from the power spectrum. With those seismic results,
we can easily estimates the global parameters of the stars, like their masses
and radii. For more advanced analysis, if we know the effective temperature
and the chemical composition of the stars, the seismic results can be compared
with models, which gives good constraints of the stellar parameters. Such kind
of work for the red giant stars in Kepler clusters are present. The detailed
modelling is given in Chapter 3, followed with several studies of specific cases.

Finally, in Chapter 4 we also investigate the interior structure of red giant
stars through the analysis of mixed modes. Since g modes normally have very
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small amplitude compared with p modes for solar-like oscillations, they are
very unlikely to be detected at the surface. However, the information of inner
structure these g-mode waves carrying is of great important. As discussed in
Section 1.3.3, mixed modes have g-mode character in the interior as well as
p-mode character in the outer part, which make them significant enough to
be observed. By analyzing these mixed modes, we can also gain some idea
about the myth in the deep interior. Although this part of work is done mainly
theoretically, some proofs of the utility for real stars are also given. We end this
thesis with concluding remarks and future prospects in Chapter 5.



Chapter 2

Red Giant Stars in Kepler
Field

The NASA Kepler Mission (Borucki et al., 2008, 2010) was successfully launched
on March 7, 2009. Its primary scientific goal is to search for Earth-size planets
in or near the habitable zone and to determine how many stars have this kind
of planets in our Milky Way. Kepler is equipped with a 0.95-meter diameter
telescope with an array of CCDs which continuously points to a large area of
the sky in the constellations Cygnus and Lyra to detect the transits of the plan-
ets. Over the whole course of the mission, the spacecraft has been measuring
the variations in the brightness of more than 100,000 stars, which are outstand-
ing data for the study of asteroseismology. For many of these stars we can
detect solar-like oscillations, which allow us to investigate them in detail and
obtain their fundamental properties, by using the techniques of asteroseismology
(Christensen-Dalsgaard et al., 2007; Aerts et al., 2010).

2.1 Data analysis

The Kepler mission observes the brightness change of a star and can provide us
very high-precision photometric light curves. The targets are observed in two
cadences, short cadence (sampling interval ∼ 58.89 s) and long cadence (sam-
pling interval ∼ 29.4 min). The short cadence data with the Nyquist frequency
∼ 8500 µHz have maximum observable frequency that is high enough to detect
solar-like oscillations in main-sequence stars. On the other hand the long ca-
dence data (the Nyquist frequency ∼ 283 µHz) are helpful for the detection for
solar-like oscillations in red giant stars. Therefor, we only introduce our work
with long cadence data.

19
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2.1.1 Time series reduction

Even though the Kepler photometric data are very ideal for asteroseismology
study (Gilliland et al., 2010), they present a series of unwanted effects mainly
from the instruments like most space based observation do. These effects may
contaminate the time series and complicate our analysis. The first effect in the
time series is the outliers probably coming from the cosmic and magnetic events.
Additionally, long term trends in flux in terms of terms of temperature drifts are
also presented in the data originating from the variation in the heating of the
space craft. Gaps and jumps are seen between quarters because of the correction
of direction of the telescope every quarter, which changes the position of the
individual stars on the CCD focal plane, with different CCD having different
sensitivity response function. Jumps are primarily CCD pixel sensitivity related
issues. Therefore, these unwanted effects should be removed before we proceed
with the analysis.

Figure 2.1: Upper panel, untreated light curve of the KIC 11618103 consists for
the first five quarters data (13 months). Different quarter data are colored with
different color. Lower panel, the same light curve as above treated by our data
analysis pipeline, removing outliers, jumps and other unwanted trends.

Figure 2.1 presents the raw long-cadence light curve (upper panel) of a Ke-
pler red giant star KIC 11618103 covering 13 months almost continuous data.
However, very small gaps exist due to the safe mode of the spacecraft. We first
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remove the outliers by performing a point-to-point sigma clipping and correct
the thermal drift fitting a second-order polynomial to the affected parts of the
time-series for each quarter. Then we normalize the flux to remove the big
jumps between each quarter. The resulted light curve is shown in the lower
panel of Figure 2.1 after these treatments. Although our automated data re-
duction pipeline is a bit crude, the signals in the solar-like oscillations frequency
range are all preserved. A more delicate and systematic method is published by
Handberg & Lund (2014).

2.1.2 Background of the power spectrum

The power spectrum describes how much a signal is at a frequency ω. A power
spectrum can be generated from the reduced time series by using a discrete
Fourier transform. However, the power spectrum does not exclude the effect
of observation gaps which insert peaks that are not from oscillations into the
frequency spectrum. Therefore we use the power density spectrum instead,
which is calculated as the reciprocal of the area integrated under the spectral
window and can be obtained easily by multiplying the power spectrum by the
effective observation length in time.

The power spectrum shows a frequency-dependent background signal due
to stellar activity, granulation and faculae which can be modelled by a sum
of several Lorentzian-like functions (Harvey, 1985). In our spectrum treat-
ment, the stellar activity, granulation and faculae were represented by modified
Lorentzian-like functions, first introduced by Karoff (2008), which give a bet-
ter fit to the background than a Harvey model with a constant slope of −2.
This background model has a shallower slope at low frequencies and a steeper
slope at higher frequencies, corresponding to stellar activity and granulation,
respectively. The power excess hump from stellar oscillations is approximately
Gaussian, so the complete spectrum was modeled by:

P (ν) = Pn +
3
∑

i=1

4σ2
i τi

1 + (2πντi)2 + (2πντi)4
+ Pg exp

(

−(νmax − ν)2

2σ2
g

)

, (2.1)

where Pn corresponds to the white noise component, σi is the rms intensity
of the granules and τi is the characteristic time scale of granulation. For the
Gaussian term, the parameters Pg, νmax, and σg are the height, the central
frequency, and the width of the power excess hump.

Fig. 2.2 shows the fitted model for the KIC 11618103 power spectrum using
Eq. (2.1). The three components of the background and the white noise were
simultaneously fitted to a lightly smoothed power spectrum (Gaussian with
FWHM of 0.5 µHz) outside the region where the power excess hump is seen.
The value of νmax was obtained by fitting to a heavily smoothed power spectrum
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(Gaussian with FWHM of 3 ∆ν, where ∆ν is estimated in Sect. 2.1.3), giving
106.5 ± 0.3 µHz. Finally, the background and the white noise were subtracted
from the power density spectrum, leaving only the oscillation signal. The power
density spectrum of the KIC 11618103 with background removed was calculated
and is shown in Figure 1.4, which is ready for next step to extract individual
oscillation frequency and other seismic parameters from the spectrum.

Figure 2.2: Power density spectrum of the combined first five quarters of data
(light-grey) and corresponding global model fit(black line). The dark-grey line
is the smoothed (Gaussian with a FWHM of 0.5 µHz) power density spectrum.
The dotted line is the fitted background and the dashed line is the white noise.
The red line shows the contribution from stellar activity, the blue from granu-
lation and the green from faculae (Karoff, 2008).

2.1.3 Estimations for νmax and ∆ν

νmax normally locates closely to the frequency of the highest peak in the power
spectrum, though it is defined as that frequency. The value of νmax and the
shape of the power excess envelope are determined by the excitation and damp-
ing. The envelope is modelled by the last term of Eq. (2.1), which directly gives
the valued of νmax, as the central frequency of the Gaussian function.

As mentioned in Section 1.3.2, the frequencies of p modes are nearly equally
spaced by the quantity ∆ν which is, as labelled in the Figure 1.4, the frequency
difference between modes with consecutive radial orders but the same degree.
In reality, there are several ways to obtain ∆ν from a power spectrum without
knowing the frequencies of individual modes. We use a fraction of the back-
ground corrected power density spectrum where power excess presented to be
applied with the two common methods to estimate ∆ν.

The first method is to calculate a power spectrum of the power spectrum,
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(PS2 Kjeldsen & Bedding (1995)). Since the power spectrum can illustrate
the periodicities of signals, the PS2 shows how the peaks repeat in frequency
domain. However, there is always a l = 1 mode located nearly in the middle of
two radial modes (see Figure 1.4), so the period of frequency peaks for solar-like
oscillations in a power spectrum is actually half of the large frequency spacing.
Figure 2.3 shows PS2 of KIC 11618103 with frequency range from 80 to 140
µHz. After performing a Fourier transform to the power spectrum, the series
was transformed back to the time domain. The first highest peak is around
2.2× 10−6 s which can be obtained by a Lorentzian fit to the peak. A series of
peaks locating at multiple time points of the highest peak indicate the overtone
of 1

2∆ν in the power spectrum. For stars with relatively low quality data,
the series of peaks may not be significant other than the first highest peak.
Measuring this peak can lead to a little deviation for ∆ν.

Figure 2.3: The power spectrum of the power spectrum of the KIC 11618103
time series. Only the fraction of the power spectrum with significant power
excess is used in the generation of this plot. The highest peak corresponds to
half of the large frequency separation.

The alternative method to estimate∆ν is the autocorrelation function, which
is the cross-correlation of a power spectrum with itself. Informally, it is the
similarity between observations as a function of the time lag between them.
It is a mathematical tool to find the repeating patterns in a power spectrum,
which is half to the ∆ν, for the same reason with PS2. The autocorrelation



CHAPTER 2. RED GIANT STARS IN KEPLER FIELD 24

Table 2.1: Results of ∆ν from methods of autocorrelation(AC), PS2 and radial
modes fitting (RM).

AC PS2 RM

∆ν 9.07 9.36 9.37

as a function of the frequency lag is plotted in Figure 2.4. The results from
autocorrelation and PS2 are given in Table 2.1.

Figure 2.4: Autocorrelation function of the power spectrum for the KIC
11618103 against the frequency. A series of peaks corresponding to multiples of
1
2∆ν. The ∆ν peak is guided by the dashed line.

The above two methods can be used to estimate ∆ν without extracting
individual mode frequency and hence they are widely included in automated
pipelines for data analysis. They are very useful when the oscillation peaks
are not significant and therefore their repeating patterns are not clear. Such
cases are normal in short-term and low-precision observations where the noise
level can be very high but the signals of oscillations are low. For a power
spectrum with significant amplitudes, a number of modes with different radial
orders become accessible. From the asymptotic relation for p mode frequency
Eq. (1.8), we know that ∆ν is the slope of that linear function. Therefore,
if we plot the mode frequencies as a function of the radial order, the slope
of that line, the ∆ν, can be estimated by performing a linear fit to the five
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l = 0 modes. Frequencies for l = 0 modes are the most suitable ones for this
calculation because they are not affected by the mixing with g-modes. In reality,
∆ν is not a constant value, but varies with frequency. For higher-radial-order p
modes, the difference of ∆ν is quite small. The resulting ∆ν from the linear fit
to radial mode frequencies and orders is a mean value, which is usable for the
asymptotic analysis. The last method actually dose not need to know the radial
orders for the fitting. Several continuous integers can also do the work. But the
frequencies of radial modes should be extracted from the power spectrum first.

2.2 Mode Identification from Kepler Data

The very high resolution and low noise level power spectra from Kepler provide
us exquisite data for asteroseismology. These data are basically the oscillation
frequencies, aside from the ∆ν and νmax for the p modes as well as the period
spacings ∆Π for the mixed modes that will be introduced in Section 4.1. Al-
though my work does not involve much effort to derive frequencies from the
power spectrum, we utilize the powerful software package called Period04 (Lenz
& Breger, 2004) to extract the frequencies of individual oscillation modes. Pe-
riod04 uses iterative sine-wave fitting, which does a good job of extracting fre-
quencies in cases such as this where the individual modes are unresolved or
barely resolved. The program analyzes the power spectrum within the power
excess range and finds the highest peak in the range. Then the contribution of
this peak to the power spectrum is in from a prewhitening process, after which
a new highest peak can be found in the new power spectrum. The method can
find all the significant peaks efficiently and precisely, but cannot provide any
information about the mode identification. It fails to distinguish the signals of
oscillations from those of other process, such as the frequency splittings caused
by rotation. Therefore, we introduce a comprehensive way to identify these
frequencies derived from the power spectrum.

It is basically not possible to gain any information about the mode iden-
tification directly from the peaks. However, from the asymptotic analysis we
know the frequencies of oscillation modes have certain regular patterns in the
power spectrum, with which the identification becomes feasible. For instance,
the roughly equal spacings between p-mode frequencies can be used to predict
locations of these p modes. In order to have an idea about the repeating pattern
of these p modes, it is convenient to rewrite Eq. (1.8) for the radial modes and
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modes of l = 1 and 2 separately,

νn,0 ≃ ∆ν(n+ ϵp)− dn,0 , (2.2)

νn,1 ≃ ∆ν(n+ 1
2 + ϵp)− dn,1 , (2.3)

νn,2 ≃ ∆ν(n+ 1 + ϵp)− dn,2 . (2.4)

Figure 2.5: Échelle diagram for the KIC 11618103, based on Eq. (2.9); the
frequencies are plotted against ν̃nl. The background is the power spectrum (cf.
Figure 1.4 ) in the échelle form. The color of the background represents the
amplitude, namely warmer color means higher amplitude. Squares are modes
extracted from the power spectrum using Period04, their sizes are scaled from
the amplitudes. Therefore the mode with highest amplitude is located around
105 µHz which is very close to the νmax. Red, green, blue, yellow are used for
modes of degree l = 0, 1, 2, 3.

The mean value of ∆ν are not the exactly same for different degree modes, but
the difference is quite small. Therefore, it is reasonable to apply the radial-mode
∆ν to other degree modes. Here in the above equations, ∆ν is from the linear
fitting to the radial modes. It is also helpful to list the differences between
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l = 1, 2 modes and the radial modes as

νn−1,2 − νn,0 ≃ − (dn,2 − dn,0) , (2.5)

νn,1 − νn,0 ≃ 1
2∆ν − (dn,1 − dn,0), (2.6)

here the difference between νn,0, νn−1,2 is the so-called small frequency separa-
tion δν, which is sensitive to the core condensation and hence to the age of the
main-sequence star (Scherrer et al., 1983),

δν ≃ νn,0 − νn−1,2 , (2.7)

while the large frequency separation is

∆ν ≃ νn+1,0 − νn,0 . (2.8)

From the above relations between different modes, it is clear to image their
pattern in a power spectrum asymptotically. For a radial mode with order n, a
l = 2 mode with n− 1 order sits to its left with a frequency spacing of δν and
a l = 1 mode with the same radial order n appears to its right at a distance
of 1

2∆ν. To illustrate the properties of this pattern in more comprehensive
way, it is useful to utilize an échelle diagram (Grec et al., 1983), in which the
frequencies are reduced modulo ∆ν by expressing them as

νnl = +k∆ν + ν̃nl , (2.9)

where k is an integer so that ν̃nl is between 0 and ∆ν. Therefore the échelle
diagram is plotted as νnl against ν̃nl. Figure 2.5 shows the power spectrum in
the échelle format, given in Eq. (2.9), together with the extracted modes with
different degrees from the power spectrum. Modes with the same degree are
illustrated in the same color. It is not surprising to find modes with the same
degree stacking up vertically in this diagram, except for the dipolar modes due
to their mixed character. The l = 0 and 2 ridges locate close to each other by
the small distance of δν, with l = 2 modes being to the left of radial modes. The
dipolar modes are supposed to be to the right of radial modes with a distance
of about half of the ∆ν. Here due to the effect of mixed modes, the dipolar
modes spread about on that location. It is more illustrative to plot the mixed
modes in the period échelle diagram instead of this frequency échelle, because
they are equally spaced in period. However, for a sub-giant star, the avoided
crossing can be clearly seen in the frequency échelle diagram (Bedding, 2012).
The sizes of the modes plotted in Figure 2.5 are scaled from their amplitudes.
The mode with the highest amplitude is a radial mode and is very close to the
νmax. The observed amplitudes are much smaller for higher degree l modes than
for lower degree modes because of the effect of partial cancellation. Therefore,
only two octupole modes are extracted from the power spectrum. Figure 2.6
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Figure 2.6: The échelle diagram of the smoothed power density spectrum (dark,
FWHM of 0.1 µHz) and the unsmoothed background corrected power density
spectrum (grey, power divided by a factor of 2) divided into bins each ∆ν wide.
The colored bars indicate 33 modes in Figure 2.5, with l = 0 modes in red, l = 1
ones in green, l = 2 ones in blue and two l = 3 modes in yellow. The peaks for
the same degree almost line up. The offset from perfect alignment is caused by
the variation of the large frequency spacing with frequency. Multiple peaks for
l = 1 mixed modes can be seen clearly.

shows another version of échelle diagram by dividing the power spectrum into
segments each ∆ν wide and stacking them up so that modes with the same
degree lie atop of each other.

Once we have a good estimation of ∆ν we can get a preliminary idea of the
mode identifications by plotting the extracted frequencies. However, rotation
and mixed modes can shift the location of peaks making the power spectrum
complicated. Therefore, an ideal method for mode identification is using the help
of modelling which is crucial in asteroseismology study, which will be introduced
in Section 3.1. Alternatively, for the purpose of peak bagging, which is a tech-
nique to extract frequencies directly from the power spectrum but much more
sophisticated than what we are using in this thesis, applying the asymptotic
relations for solar-like oscillations also helps to identify mode more correctly
(cf. Handberg & Campante 2011).
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2.3 Asteroseismology of Kepler Open Clusters

With the techniques introduced in the last section, we are able to analyse the
observed time series with the intension of obtaining some seismical parameters,
such as the ∆ν, νmax, and mode frequencies. In this section, we demonstrate
the result of the red giant stars of the Open Clusters, NGC 6791, NGC 6811 and
NGC 6819, using the Kepler data. Many recent studies of solar-like oscillations
of red giant stars have been focused on those three open clusters in the Kepler
field (Basu et al. 2011; Hekker et al. 2011; Stello et al. 2011; Corsaro et al.
2012; Miglio et al. 2012). Stars in a certain cluster are formed from the same
interstellar cloud of gas and dust at the same time and hence it is reasonable to
assume that all stars in this cluster share the same age, distance and metallicity.
This knowledge is an excellent advantage that allows for stringent verification
of stellar evolution theory. The large number of stars in the cluster also provide
good samples for investigation of stellar interior structure.

2.3.1 Observations

Solar-like oscillations have been detected in K giants in the open cluster M67
(Stello et al., 2007) and the globular clusters 47 Tuc (Edmonds & Gilliland,
1996) and NGC 6397 (Stello & Gilliland, 2009a). The first study about cluster

in the Kepler field of view was performed by Stello et al. (2010) for the open
cluster NGC 6819. By now the Kepler time-series photometry cover 17 quarters
of the observation time, which is about 49 months long. Although not all the
stars in the three Kepler open clusters, NGC 6791, NGC 6811 and NGC 6819,
are observed the whole time, Kepler data are precise enough for extracting
reliable seismic parameters, while the data prior to Kepler failed to do so but
could only reveal the presence of the oscillations.

We analysis the time series to obtain the global oscillation parameters using
the method introduced in last section. First, we merge the time series for all the
quarters for a certain star in the cluster while eliminating the outliers, removing
the long-term systematic trend and normalizing them. The resulting time series
are then transformed into the frequency domain through a Fourier transform.
After removing the background, the power spectra are ready for further analysis.
We studied 89 stars belonging to the three clusters (52 in NGC 6791, 32 in NGC
6819 and 5 in NGC 6811) and obtained reliable ∆ν and νmax for 67 of them.
Figure 2.7 shows 10 examples of the power spectra from NGC 6791. The power
spectra are background removed with the above mentioned procedure, though
high noise can still be seen at low frequency range, which is a known issue for
Kepler data. Therefor, Kepler data are not good enough for the study of low-
frequency oscillations, such as g modes and oscillations in evolved red giants.
Solar-like oscillations are clear for the spectra in the figure and also for other
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KIC 2437507

KIC 2436332

KIC 2435987

KIC 2437240

KIC 2436209

KIC 2570094

KIC 2570172

KIC 2437976

KIC 2436818

KIC 2437933

Figure 2.7: Power spectra of 10 stars in NGC 6791, with νmax increasing from
the top to the bottom. Solar-like oscillations are clear on the spectra. The νmax

and ∆ν are listed in Table 2.2.
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59 stars, which enables us to obtain the seismic parameters easily and they are
listed in Table 2.2 for NGC 6791, Table 2.3 for NGC 6819 and Table 2.4 for
NGC 6811. The νmax we obtained for all the data cover a large range, the lowest
end is 7.8 µHz and the highest one is 159.6 µHz. Accordingly, the ∆ν are in
the range of 1.15 µHz to 11.98 µHz. The differences in these two parameters for
the targets mean that the stars occupy different positions along the red giant
branch, some of them are also clump stars. In this thesis, we only study the
stars ascending the red giant branch and the targets in Table 2.2 and Table 2.3
are all RGB, but the 5 stars of NGC 6811 in Table 2.4 are clump stars. We
made the selection of RGB by using the classification for RGB and clump stars
given by Stello et al. (2011). As the star evolve along the ascending branch,
the luminosity increase rapidly, the star keep expanding and therefore the mean
density decrease. ∆ν and νmax also become smaller for more evolved RGB. .

Figure 2.8: ∆ν vs. νmax for the targets in the cluster NGC 6791 (red), NGC
6819 (green) and NGC 6811 (blue), with the fit through all the data.

The large sample of giant seismic data provide us opportunity to explore the
relation between ∆ν and νmax. As already pointed by (Stello et al., 2009b) and
(Huber et al., 2010), the two parameters follow a tight power-law relation:

∆ν ≃ aνbmax , (2.10)

where νmax is in the unit of µHz, a and b are open coefficient. After a fit to
the giants we got from the three open clusters (cf. Figure 2.8, we derived a
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result of a = 0.267± 0.004 and b = 0.754± 0.004, which is in good agreement,
for a but not for b, with what (Stello et al., 2009b) got from a fit to red giants
and main-sequence stars (a = 0.263 ± 0.009, b = 0.772 ± 0.005). Hekker et
al. (2009) also measured this relation for CoRoT red giants (νmax < 100µHz)
and the work is followed by Mosser et al. (2010) who found a set of [a, b] as
[0.28 ± 0.02, 0.75 ± 0.01]. The latter considered a significant larger sample of
data with lower error bars than the former and they did not scale the relation
to the solar values of ∆ν and νmax. There exponent b is consistent with ours
because we both measure the relation for RGB. However, the power-law relation
between ∆ν and νmax depends on mass and effective temperature. In order to
investigate this dependance Hekker et al. (2011) divide the field sample of the
same clusters as ours into low- and high-mass group with a threshold of 1.5 M⊙
and derived different set of [a,b] for the two groups, [0.282±0.003, 0.754±0.002]
for the low-mass sample and [0.262±0.005, 0.753±0.005] for the high-mass one.
Our value of a is more in line with that obtained for higher-mass sample. Basu
et al. (2011) estimated model-independant the average mass of NGC 6791 and
NGC 6819 red giants to be 1.20 ± 0.01M⊙ and 1.68 ± 0.03M⊙, respectively.
The difference in our value a may be due to the higher masses stars in NGC
6819 and the different mass distributions. We also have 5 clump stars of NGC
6811 in the sample, of which the stars have even larger masses than those of
NGC 6819. In addition to study the mass dependence of the ∆ν – νmax relation,
Hekker et al. (2011) also verified the influence of metallicity on the relation.
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Table 2.2: Properties of NGC 6791.

KIC ID νmax ∆ν ∆νsc νmax,sc Teff (B-V) Teff (V-K) logL/L⊙ BC
(µHz) (µHz) (µHz) (µHz) (K) (K)

2435987 38.1± 2.3 4.21 ± 0.10 35.3 4.0 4357 4363 1.60 -0.71

2436097 42.5± 2.6 4.50 ± 0.08 40.1 4.4 4369 4369 1.55 -0.70
2436209 57.1± 2.8 5.76 ± 0.07 53.3 5.5 4537 4491 1.46 -0.61

2436332 28.7± 1.8 3.40 ± 0.07 27.0 3.3 4374 4305 1.70 -0.76
2436458 36.0± 2.3 4.16 ± 0.06 35.1 4.0 4393 4336 1.60 -0.73

2436540 57.7± 3.0 5.80 ± 0.10 53.8 5.6 4507 4445 1.44 -0.64

2436688 77.5± 3.2 7.22 ± 0.08 73.7 7.1 4577 4530 1.34 -0.58
2436814 25.4± 1.7 3.11 ± 0.07 24.6 3.0 4359 4291 1.73 -0.77

2436818 91.7± 5.2 8.82 ± 0.10 93.6 8.5 4654 4543 1.24 -0.57

2436824 33.2± 2.1 3.87 ± 0.05 33.3 3.8 4366 4322 1.61 -0.75
2436900 34.6± 2.3 4.06 ± 0.07 35.5 4.1 4445 4404 1.61 -0.68

2437040 25.0± 1.8 3.06 ± 0.08 28.8 3.4 4354 4258 1.65 -0.57
2437240 45.4± 2.7 4.84 ± 0.08 44.2 4.8 4484 4436 1.53 -0.65

2437270 70.4± 3.8 6.50 ± 0.07 59.1 6.0 4458 4533 1.43 -0.58

2437325 94.7± 4.9 8.51 ± 0.14 89.4 8.1 4856 4445 1.22 -0.64
2437340 7.8± 0.6 1.37 ± 0.07 8.3 1.3 3984 3982 2.09 -1.15

2437402 45.0± 2.7 4.83 ± 0.09 43.4 4.7 4458 4413 1.53 -0.67

2437444 19.4± 1.4 2.47 ± 0.07 17.5 2.3 4261 4184 1.84 -0.89
2437488 65.9± 3.0 6.31 ± 0.12 58.9 6.0 4516 4454 1.41 -0.64

2437507 20.5± 1.1 2.59 ± 0.07 19.6 2.6 4312 4243 1.81 -0.82
2437653 72.2± 3.7 7.01 ± 0.08 69.8 6.8 4536 4483 1.34 -0.61

2437781 83.8± 4.6 7.82 ± 0.10 75.0 7.1 4539 4453 1.30 -0.64

2437816 18.0± 1.1 2.33 ± 0.07 17.0 2.3 4286 4214 1.86 -0.85
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Table 2.2 – continued

KIC ID νmax ∆ν ∆νsc νmax,sc Teff (B-V) Teff (V-K) logL/L⊙ BC
(µHz) (µHz) (µHz) (µHz) (K) (K)

2437933 106.5 ± 5.4 9.37 ± 0.08 106.8 9.4 4620 4606 1.20 -0.53

2437957 91.2± 4.7 8.53 ± 0.07 92.9 8.5 4620 4598 1.26 -0.53

2437972 84.4± 3.7 7.87 ± 0.17 77.9 7.4 4612 4541 1.32 -0.57
2437976 88.9± 3.6 8.15 ± 0.15 83.5 7.8 4590 4523 1.28 -0.58

2438038 63.0± 3.1 6.15 ± 0.08 58.8 6.0 4503 4451 1.41 -0.64

2438140 70.8± 3.4 6.73 ± 0.06 69.8 6.8 4541 4542 1.36 -0.57
2438333 61.6± 2.7 6.09 ± 0.08 59.6 6.0 4489 4499 1.42 -0.60

2569360 21.6± 1.2 2.77 ± 0.07 21.1 2.7 4317 4256 1.78 -0.81
2569618 55.6± 2.7 5.66 ± 0.07 54.2 5.6 4541 4496 1.46 -0.60

2570094 66.9± 3.5 6.49 ± 0.10 64.5 6.4 4518 4482 1.38 -0.61

2570172 74.3± 3.2 7.02 ± 0.10 70.0 6.8 4543 4499 1.35 -0.60
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Table 2.3: Properties of NGC 6819.

KIC ID νmax ∆ν ∆νsc νmax,sc Teff (B-V) Teff (V-K) logL/L⊙ BC
(µHz) (µHz) (µHz) (µHz) (K) (K)

4937576 32.7± 2.1 3.55 ± 0.07 30.1 3.32 4559 4490 1.86 -0.75
4937770 93.8± 4.9 7.57 ± 0.14 86.0 7.48 4991 4797 1.50 -0.31

4937775 92.3± 5.7 7.34 ± 0.58 83.6 7.41 5144 4942 1.56 -0.39
5023732 27.5± 1.6 3.11 ± 0.08 25.5 2.94 4591 4527 1.94 -0.72

5023845 108.6 ± 4.5 8.91 ± 0.08 100.7 8.40 4844 4771 1.42 -0.55

5023931 50.8± 2.7 4.89 ± 0.12 46.2 4.63 4707 4632 1.72 -0.64
5024143 117.6 ± 5.2 9.66 ± 0.07 111.8 9.07 4872 4747 1.37 -0.53

5024240 159.6 ± 6.0 11.98 ± 0.09 157.0 11.81 4952 4862 1.26 -0.49

5024297 45.8± 2.5 4.56 ± 0.09 43.3 4.40 4693 4579 1.73 -0.64
5024312 90.0± 5.4 8.11 ± 0.07 91.4 7.78 4835 4707 1.45 -0.55

5024404 47.8± 2.8 4.80 ± 0.59 43.3 4.41 4716 4617 1.74 -0.63

5024405 99.7± 4.2 8.28 ± 0.08 92.8 7.84 4784 4670 1.43 -0.58
5024512 74.2± 3.5 6.69 ± 0.08 73.8 6.63 4852 4720 1.54 -0.54

5024583 36.8± 2.3 3.92 ± 0.13 34.6 3.70 4620 4528 1.81 -0.70
5024750 13.5± 1.2 1.76 ± 0.09 11.6 1.61 4431 4378 2.23 -0.87

5111718 133.3 ± 5.1 10.48 ± 0.18 127.6 10.10 4933 4849 1.35 -0.50

5111940 52.1± 2.7 5.19 ± 0.06 50.3 4.96 4735 4666 1.69 -0.62
5112072 125.4 ± 4.1 9.98 ± 0.17 121.6 9.73 4926 4836 1.36 -0.50

5112361 69.3± 3.6 6.17 ± 0.11 59.8 5.70 4946 4812 1.67 -0.49

5112403 141.2 ± 6.3 11.12 ± 0.15 140.6 10.84 4939 4822 1.30 -0.50
5112734 39.5± 2.3 4.14 ± 0.12 37.0 3.88 4640 4523 1.78 -0.68

5112744 44.6± 2.2 4.40 ± 0.09 40.8 4.20 4662 4567 1.75 -0.67
5112786 7.8± 0.8 1.15 ± 0.07 6.7 1.04 4265 4187 2.41 -1.08

5112880 26.2± 1.3 2.81 ± 0.05 19.4 2.38 4527 4453 2.04 -0.78
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Table 2.3 – continued

KIC ID νmax ∆ν ∆νsc νmax,sc Teff (B-V) Teff (V-K) logL/L⊙ BC
(µHz) (µHz) (µHz) (µHz) (K) (K)

5112948 42.9± 2.2 4.28 ± 0.08 38.5 4.02 4640 4564 1.78 -0.68

5113041 37.5± 2.1 3.97 ± 0.09 36.3 3.84 4645 4527 1.79 -0.68

5113441 155.3 ± 5.2 11.68 ± 0.13 161.9 12.04 4895 4812 1.23 -0.40
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Table 2.4: Properties of NGC 6811.

KIC ID νmax ∆ν ∆νsc νmax,sc Teff (B-V) Teff (V-K) logL/L⊙ BC
(µHz) (µHz) (µHz) (µHz) (K) (K)

9534041 112.1 ± 5.1 7.84 ± 0.22 115.7 8.79 6012 5453 1.76 -0.15

9655101 102.9 ± 4.6 7.74 ± 0.33 107.0 8.27 5291 5418 1.78 -0.16
9655167 101.9 ± 7.1 8.21 ± 0.35 105.4 8.07 5322 5245 1.74 -0.21

9716090 107.0 ± 2.0 8.55 ± 0.32 107.7 8.11 5777 5075 1.68 -0.27

9716522 54.5 ± 2.7 4.84 ± 0.11 51.2 4.67 5343 5139 2.02 -0.25
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2.3.2 Estimates of Effective Temperature

We used the metallicity-dependent temperature vs. color calibrations by Ramı́rez
& Meléndez (2005) to estimate the effective temperature for all the targets in
Table 2.2, 2.3 and 2.4. First we determine the temperatures based on the (B−V )
color. We obtained the B and V band photometry from Stetson et al. (2003) for
NGC 6791, V band and (B − V ) color from Hole et al. (2009), B and V band
from the Tycho-2 catalogue (Høg et al., 2000). Therefore, we have V band and
observed (B − V )obs color for all the three clusters. Then the intrinsic (B − V )
of the targets can be derived by

(B − V ) = (B − V )obs − E(B − V ) , (2.11)

where E(B − V ) is the reddening index, which helps to correct the color index
from interstellar extinction, due to the light scattering off dust and other matter
in the interstellar medium. The adopted average cluster reddening of E(B−V )
is given in Table 2.5. In the table, the source of E(B − V ) is Brogaard et al.
(2011), Bragaglia et al. (2001), and Lindoff (1972) for NGC 6791, NGC 6819,
NGC 6811, respectively.

Table 2.5: Adopted parameters for the three clusters in this thesis.

Cluster E(B − V ) E(V −K) (m−M)0
NGC 6791 0.16 0.432 13.11

NGC 6819 0.15 0.405 11.85
NGC 6811 0.16 0.435 10.3

After the reddening correction, we plot the color-magnitude diagrams of the
targets in Figure 2.9. All our targets are bright enough to have JHK photom-
etry from the 2MASS catalog (Skrutskie et al., 2006), allowing us to gain the
(V − K) color index which is also plotted in the color-magnitude diagram of
Figure 2.9 after removing the reddening E(V −K) (Hekker et al., 2011, see Ta-
ble 2.5). Using the Ramı́rez & Meléndez (2005) color-temperature calibrations
we then transformed the (B − V ) and (V − K) color indices to Teff , respec-
tively. We adopted the way that Hekker et al. (2011) estimated the uncertainty
in Teff to be 110 K including the contributions from photometry, reddening es-
timations and color-temperature relations. We compare the Teff derived from
(V − K) color with those from (V − K) and plot the results in Figure 2.10.
One outlier exists for NGC 6791, KIC 2437325, appears to be much cooler in
(V −K) than it does in (B−V ). For NGC 6891, the difference is not significant
for all the targets, though (B−V ) temperatures seem higher than the (V −K)
ones for most of the stars. The outliers in Stello et al. (2011) are not included in
our sample, so we are not able to verify them, but otherwise the temperatures
are in good agreement with their results. Stello et al. (2011) pointed out that
the (V −K) color index is generally the better temperature proxy for cool red
giants, so we use temperatures from (V −K) for further analysis.
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Figure 2.9: Color-magnitude diagrams in the three clusters (same color coding
as in Figure 2.8). The (B − V ) and (V −K) color is corrected from reddening.
The upper two diagrams show all the cluster members (black dots) in NGC 6791
(Stetson et al., 2003) and NGC 6819 (Hole et al., 2009) and targets in our study
(coloured dots). The lower shows the V magnitude against (V −K) color for
all the three clusters. The clusters are located differently in the diagram into
three groups, indicating deviations in global parameters, such as mass.
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Figure 2.10: Difference between temperatures derived from the (V − K) and
(B − V ) color indices for NGC 6791 (left) and NGC 6819 (right). The vertical
dashed lines locate the position of 0. The y-axis is the KIC number ascending
with the same order as given in Table 2.2 and 2.3.

2.3.3 Estimates of Luminosity

Luminosity measures the total amount of energy that a star emits per unit
time. Normally it is related to the brightness that is the luminosity observed in
a certain spectral region. If we plot the luminosity as a function of the surface
effective temperature of our cluster targets in the Hertzsprung–Russell diagram,
we can have basic idea of their evolutionary stages. As a matter a fact, the color-
magnitude diagrams shown in Figure 2.9 is also a version of Hertzsprung–Russell
diagram, because the V band photometry is the apparent magnitude, also called
visual magnitude, which is a measure of the stellar brightness as observed by the
telescope and is related to the luminosity and the color indices can directly lead
to effective temperature. Additionally, luminosity is an important parameter in
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modelling.

Figure 2.11: Evolutionary tracks of two models for the targets in NGC 6791 (red
diamonds) and NGC 6819 (green diamonds). The initial masses of the models
are 1.25 and 1.70 M⊙. It is clear that all our targets are on the ascending giant
branch. Detailed modelling is still needed to determine the masses.

Assuming a star is a black body, the luminosity of a star L is given by:

L = 4πR2σT 4
eff (2.12)

where σ is the Stefan–Boltzmann constant 5.67 × 10−8Wm−2K−4 and R is
the stellar radius which is not a measurable parameter from photometry, but
through a somewhat lengthy calculation it is attainable, which involves the
stellar distance and absolute magnitude. Instead of calculating the radius for
our targets, we obtain their luminosities. The luminosity ratio to the Sun is
related to the difference in bolometric magnitude as:

log

(

L

L⊙

)

=
Mbol,⋆ −Mbol,⊙

−2.5
, (2.13)

where L⊙ is the luminosity of the Sun, Mbol,⊙ and Mbol,⋆ are the bolometric
magnitudes of the star and the Sun, respectively. The bolometric magnitude of
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the star can be corrected from its absolute visual magnitude:

Mbol,⋆ = MV + BC , (2.14)

here BC is a bolometric correction, MV is the V band absolute magnitude.
The BC depends on the stellar temperature. We derived the BCs using the
calibrations of Flower (1996), who introduced BC–temperature relations. The
BCs of our targets are listed in Table 2.2, 2.3 and 2.4 for the three clusters.
The other term on the right side of equation 2.14 MV can be obtained from the
observable apparent visual magnitude V with

MV = V − µ , (2.15)

with µ being the visual distance modulus, always denoted as µ = (m −M)V .
Similar to the color indices, the interstellar medium absorption is also an im-
portant factor to the distance modulus and it can even play a dominant role
in some special cases, e.g. in the direction of the galactic centre. Hence a red-
dening correction can be performed to the visual distance modulus which then
become the true distance modulus denoted as µ0 = (m−M)0. We adopted the
distance moduli for NGC 6791 and NGC 6819 from Basu et al. (2011), and that
for NGC 6811 from Barkhatova et al. (1978). The difference between the visual
and true distance modulus is the interstellar extinction A(V ),

(m−M)0 = V0 −MV = V −A(V )−MV

= (m−M)V −A(V ) . (2.16)

The extinction A(V ) is actually the difference between the apparent and true
magnitudes of V band and is related to the reddening correction, given by

A(V ) = V − V0 = 2.5E(B − V ) , (2.17)

where the coefficient 2.5 is the reddening constant R(V ) = A(V )/E(B − V ). It
is straightforward to derive the luminosity from equations (2.13), (2.14), (2.16)
and (2.17):

log

(

L

L⊙

)

=0.4(Mbol,⊙ − V + 2.5E(B − V )

+ (m−M)0 −BC) , (2.18)

with Mbol,⊙ adopted as 4.7554 mag. The luminosities of all our cluster targets
are also given in Table 2.2, 2.3 and 2.4. For the uncertainties of luminosity,
we considered the same contributions from V (0.02), E(B − V ) (0.02) as for
the temperature, and also those from (m − M)0 (0.06) and BC (0.01). As a
result, we adopted a conservative uncertainty of 0.01 for all the luminosities. So
far we have obtained the two parameters Teff and L, we can plot the targets
in the Hertzsprung–Russell diagram of Figure 2.11, in which we also plot two
evolutionary tracks of the models simulated by the ASTEC evolution code
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(Christensen-Dalsgaard, 2008a) to guide the eye. The models are initiated from
the parameters in Basu et al. (2011). They are not for detailed modelling, but
only to give the basic idea of how the two clusters evolve.

2.3.4 Verification of Memberships

Although targets in the same cluster share some global parameters, such as
distance, metallicity and age, they don’t necessarily have an identical mass. In
fact, members of a cluster have large differences in mass, which decide the speed
of their evolution. Under the condition that they have same initial composition,
members with larger masses evolve faster than those with smaller masses, and
consequently members at the same evolution stage are supposed to have rel-
atively similar masses. Combining the asymptotic scaling relations given by
equations (1.12) and (1.13) with luminosity equation (2.12) yields

νmax

νmax,⊙
≃

(

M

M⊙

)(

Teff

Teff,⊙

)3.5( L

L⊙

)

−1

, (2.19)

∆ν

∆ν⊙

≃

(

M

M⊙

)0.5( Teff

Teff,⊙

)3( L

L⊙

)

−
3
4

, (2.20)

which scale the νmax and ∆ν from luminosity instead of radius. The two vari-
ables in equations (2.19) and (2.20) Teff and L are already obtained, and for
the mass we again adopted the ones from Basu et al. (2011) for NGC 6791
and NGC 6819. For NGC 6811 we used the value of 2.6 M⊙ as the average
mass (Hekker et al., 2011). Therefore νmax and ∆ν can be estimated using the
scaling relations, and they are expected in the same cluster and are expected
to have similar masses. The results from the scaling relations νmax,sc and ∆νsc
are listed in Table 2.2, 2.3 and 2.4 for the three clusters, respectively. The
observed–to–scaled ratios for νmax and ∆ν are shown in Figure 2.12. Almost
all the targets locate within the 1 − σ, which means the masses we used in the
scaling relations are correct and all the targets are members of their cluster.
This method was used by Stello et al. (2011) to distinguish the membership for
NGC 6791, NGC 6819 and NGC 6811. They studied almost one year data of
Kepler data and confirmed four previously found non-members in NGC 6819
and three additional non-members are found, two in NGC 6819, one in NGC
6791. The scaling relations are proved to be a very robust method to study the
membership of clusters directly using seismic properties. Here in this thesis, we
have data that span 4 times longer than that in the work of Stello et al. (2011),
which are therefore enable us to obtain accurate seismic parameters for these
red giant targets in the three open clusters.

It should be noted that the temperature used for the scaled νmax and ∆ν are



CHAPTER 2. RED GIANT STARS IN KEPLER FIELD 44

Figure 2.12: Ratio between observed and solar-scaled νmax (top) and ∆ν (bot-
tom) for targets in NGC 6791 (red), NGC 6819 (green) and NGC 6811 (blue).
The x-axis is again the KIC number.

calibrated from (V −K) color index. We also tested the results using (B − V )
colors. The scatter of is 1% larger for the ratio of νmax and 3% larger for the
ratio of ∆ν scaled from (V −K) colors. These results verify that the utility of
(V −K) color to derive temperature for cool red giants is more reasonable than
(B − V ).



Chapter 3

Modelling

In Chapter 2, we spend most of the pages introducing asteroseismology for
RGBs from the observation point of view. In this chapter, we will discuss as-
teroseismology theoretically, specifically we will focus on the numeric modelling
part. However, we will not dig into the codes to investigate how they numeri-
cally interpret various complicated physics, but to discuss the utilization of the
codes from the consumer’s point of view. The codes here we are using refer to
evolutionary codes that can simulate the evolution track of the star, and os-
cillation codes that can compute oscillation frequencies and eigenfunctions for
models generated by evolutionary codes. For the former one, we generally use
the Aarhus STellar Evolution Code (ASTEC, Christensen-Dalsgaard, 2008a) and
for the latter one we use the Aarhus Adiabatic Oscillation Package (ADIPLS,

Christensen-Dalsgaard, 2008b).

In the first part of this chapter, we will introduce the general problems of
modelling in asteroseismology and in the remaining parts we will show several
examples of our modelling work.

3.1 Modelling stars in Asteroseismology

At the beginning of this thesis, we show a simple H–R diagram, Figure 1.1, sim-
ulating the solar evolutionary track computed by ASTEC. With correct initial
input parameters, the track is able to provide information on models at certain
stage for a given star, in this case our Sun. Different evolution codes require
different parameters. In ASTEC, the simplest set of initial inputs is mass and
composition to start an evolutionary computation. It is also possible to con-
trol the mixing length, diffusion, overshoot and the kind of some complicated

45
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Figure 3.1: Evolutionary tracks for models with different masses (M = 1.00
to 1.40M⊙ and Z = 0.025 to 0.040. Models with the same masses are in the
same color. There is no distinguishment in color nor line style among models
with different Z, but in principle models with larger value of Z have smaller
temperatures and luminosities and hence lies to the right of ones with smaller
Z.

physics. However, there are many aspects of physics that so far we do not
understand. Therefore we have to make some simplifications in the modelling.
Aerts et al. (2010) summarize the approximations made in most stelar evolution
calculations. Here we simply cite their summarizations adopted in ASTEC:

1. The convection is generally approximated and parametrized through the
mixing-length theory.

2. Effects of rotation are ignored.

3. Effects of magnetic fields are ignored.

4. Effects of stellar winds are ignored.

For the calculations of oscillation frequencies, the assumption of adiabatic os-
cillation is always used, which assumes the oscillating elements do not transfer
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heat or matter between itself and its surroundings and the motion occurs adi-
abatically. Since the star can be seen as a giant gas ball and we are talking
about heat transfer or energy transfer at this point, we shall pay some special
attention on the energy equation of hydrodynamic:

dq

dt
=

dE

dt
+ p

dV

dt
, (3.1)

where dq/dt is the rate of heat gain or loss, E the internal energy, per unit mass
and V = 1/ρ is specific volume. Equation (3.1) can be expressed in terms of
thermodynamical coefficients:

dq

dt
=

1

ρ(Γ3 − 1)

(

dp

dt
−

Γ1p

ρ

dρ

dt

)

= cp

(

dT

dt
−

Γ2 − 1

Γ2

T

p

dp

dt

)

= cV

[

dT

dt
− (Γ3 − 1)

T

ρ

dρ

dt

]

. (3.2)

When the assumption of adiabatic is considered, the heating can be neglected,
therefore from the energy equation given above

dp

dt
=

Γ1p

ρ

dρ

dt
. (3.3)

This equation, together with the continuity equation

∂ρ

∂t
+ div(ρv) = 0, (3.4)

where v(r, t) is the velocity of the moving element, and equation of motion

ρ
∂v

∂t
+ ρv ·∇v = −∇p+ ρf , (3.5)

where f is the body force per unit mass which needs to be specified in a given
situation, and the Poissen equation

∇2Φ = 4πGρ , (3.6)

form the complete set of equations for adiabatic oscillations. We consider only
gravity that is among all the possible body forces. The force per unit mass
from gravity is the gravitational acceleration g, which is the gradient of the
gravitational potential Φ as

g = −∇Φ. (3.7)
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Figure 3.2: Échelle diagrams of observed (filled triangles) and computed (open
triangles) frequencies for the Sun. The left plot shows the offsets between ob-
served and computed frequencies, while the right one shows the theoretical fre-
quencies after surface corrections. Four degrees of modes are presented in the
plots with radial models in red, l = 1, 2 and 3 mode in blue, green and orange,
respectively. The observed solar frequencies are from BiSON.

Some oscillation codes also take non-adiabatic effects into account, but their
treatment is not clear yet. Furthermore, most of the uncertain or neglected
microphysics are concentrated very near the surface (Aerts et al., 2010). Such
near-surface can be very problematic to the evolutionary codes as well as to the
oscillation frequencies.

As mentioned above, mass and metallicity are two important inputs to the
evolutionary codes. In most astronomical objects, hydrogen and helium are the
dominant elements. The metallicity can be expressed by the hydrogen mass
fraction X = mH/M , helium mass fraction Y = mHe/M and the mass fraction
of all the elements heavier than helium Z =

∑

mi/M = 1 − X − Y (i > He)
where M is the total mass of the system and mi is the mass of the element it
contains. ASTEC accepts X and Z as the input of metallicity because Y is very easy
to obtain from them. Figure 3.1 shows a bunch of models with different masses (from
1.00 to 1.40 M⊙) and different Z values (from 0.025 to 0.040). Their X and mixing
length parameter α are fixed as 0.70 and 1.80, respectively. For models with higher
masses, their tracks have higher temperatures and luminosities than those models with
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Table 3.1: Near-surface corrections for the solar model
l ni ⟨νobs(n)⟩ ⟨νref(n)⟩ ⟨∆νobs(n)⟩ ⟨∆νref(n)⟩ a r

(µHz) (µHz) (µHz) (µHz) (µHz)

0 10–28 2765.89 2768.53 134.98 135.67 -3.08 1.00011

1 10–27 2762.29 2764.72 135.07 135.78 -3.40 1.00024

2 10–27 2823.94 2826.49 135.22 135.96 -3.32 1.00027
3 10–25 2677.36 2678.86 135.43 136.11 -3.96 1.00057

lower masses. For models with same mass but different Z values, larger Z value models
lie to the right of less metal-rich models, hence their temperatures and luminosities
are smaller than the latter models at the same evolutionary point. The code is able
to provide a large number of parameters of the model at every time step along the
track. However, models with totally different inputs can occupy the same point in the
H–R diagram. This is very clear in Figure 3.1 that many models overlap with other
models of different color. In fact, the evolution track of a model can be very close,
for some time at certain stage, to that of a model with higher masses and higher Z.
Furthermore, X and α can also change the evolution tracks of the models. We do not
discuss in detail how they will change the tracks, but to get the best model that fits
a real star we need the correct set of inputs.

3.1.1 Selecting the Best-fitting model

So how to find the best fit models among all these models initiated from various
sets of inputs? We can make use of the observations to fulfill this goal. There are two
approaches could be used for the modelling in asteroseismology. The first one is the so-
called grid-based method, which uses models generated by a wide range of masses and
metallicities and perhaps mixing-length parameter and search for the best model that
fits the observational constraints, such as νmax, ∆ν Teff and [Fe/H] (Stello et al. 2009b;
Basu et al. 2010; Gai et al. 2011; Chaplin et al. 2014). The other approach is detailed
frequency modelling, which uses individual oscillation frequencies extracted from the
observed power spectrum instead of the global seismic parameters to determine the
best-fitting model more precisely (Metcalfe et al., 2010; Jiang et al., 2011). In this
thesis, we use the detailed frequency modelling approach to look for best-fitting model
for our targets, but we also use the global parameters as preliminary constraints.

In this section we continue using our Sun, the best observed star of all time, as
an example to explain how to perform the asteroseismic modelling. First, we should
calculate some models that cover a wide range of masses and metallicities. Since we
observed the Sun so well that we know its radius (R⊙ = 6.95508×108 cm), luminosity
(L⊙ = 3.846 × 1033 erg/s) , effective temperature (Teff = 5777 K), age (4.57 Gyr),
Z/X = 0.0245 (Grevesse & Noels, 1993), it is possible for us to calibrate the solar
model based on these solar parameters after several iterations. The model plotted in
Figure 1.1 is actually a calibrated solar model track with initial X = 0.718, Z = 0.0176
and α = 1.93, which hit the solar parameters at the age of 4.57 Gyr. For stars other
than the Sun, we do not have so many observational constraints that we may only two
or three parameters, normally Teff , [Fe/H], photometry and seismic ones νmax and ∆ν,
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which can be used for the model selection. Then we could perform a χ2 minimization
to find the best models. The definition of the χ2 function was based on observed stellar
parameters, P obs

i , as follows:

χ2 =
1
N

N
∑

i=1

(

P obs
i − Pi

σi

)2

, (3.8)

where N is the number of observed variables, Pi is model parameters, and σi is the
estimated uncertainty for each P obs

i . Models with χ2 less than a certain threshold are
selected for frequency comparison.

3.1.2 Near-surface correction

Then we can go on to compute oscillation frequencies for this particular model at
this particular age and compare them with observed frequencies. The theoretical fre-
quencies are computed using the ADIPLS code, and the observed frequencies are from
Birmingham Solar Oscillation Network (BiSON, Chaplin et al., 1996). However, it has
been established by several studies Christensen-Dalsgaard et al. 1988; Dziembowski et
al. 1988; Christensen-Dalsgaard et al. 1996; Christensen-Dalsgaard & Thompson 1997
that there is a long-lasting systematic deviation between the theoretical and observed
frequencies due to the deficient treatment of near-surface layers in the modelling codes.
Kjeldsen et al. (2008) derived an empirical correction for the near-surface effect, which
we will use in the following pages. For the Sun, the offset between the computed
frequencies of the best model νbest and the observed ones νobs can be well fitted by a
power law given by

νobs(n)− νbest(n) = a

[

νobs
ν0

]b

, (3.9)

where n is the radial order, and ν0 is a suitably chosen reference which is usually chosen
to be the νmax. Although the best model here is thought to be the one describing the
stellar interior, it still fails to model the near-surface layers. That is also why the
offsets exist in equation (3.9) for the “best model”. Practically, we may have some
candidates for the best models, which are very close to the best models and are called
the reference model. The frequencies of the reference model, νref , are also very close
to those of the best model and from homology they can be scaled from νbest like this

νbest = rνref(n) , (3.10)

where r is the scaling factor. A reference model close to the best model gives a value
of r close to 1. Substituting equation (3.10) into equation (3.9) results

νobs(n) − rνref(n) = a

[

νobs
ν0

]b

. (3.11)

In order to obtain the factor r, we can differentiate equation (3.11) with respect to n,
which gives

∆νobs(n)− r∆νref(n) = ab

[

νobs(n)
ν0

]b−1 ∆νobs(n)
ν0

. (3.12)
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Rearranging last two equations then r is directly given by

r = (b− 1)

[

b
⟨νref(n)⟩
⟨νobs(n)⟩

− ⟨∆νref(n)⟩
⟨∆νobs(n)⟩

]

−1

, (3.13)

and

b =

[

r
⟨∆νref(n)⟩
⟨∆νobs(n)⟩

− 1

] [

r
⟨νref(n)⟩
⟨νobs(n)⟩

− 1

]

−1

. (3.14)

where ⟨νref(n)⟩ and ⟨νobs(n)⟩ are the means of the given sets of frequencies with radial
orders n1, n2, ..., nN , and

⟨∆νobs(n)⟩ =

N
∑

i=1
[νobs(ni)− ⟨νobs(n)⟩] (ni − ⟨n⟩)

N
∑

i=1
(ni − ⟨n⟩)2

, (3.15)

⟨∆νref(n)⟩ =

N
∑

i=1
[νref(ni)− ⟨νref(n)⟩] (ni − ⟨n⟩)

N
∑

i=1
(ni − ⟨n⟩)2

, (3.16)

Lastly, by assuming a value for either b or r and estimate the other using equa-
tion (3.13) or (3.14), the value of a is given as

a =
⟨∆νobs(n)⟩ − r ⟨∆νref(n)⟩

N−1
N
∑

i=1
[νobs(ni)/ν0]

b

. (3.17)

Kjeldsen et al. (2008) found b = 4.90 using the solar data measured by Lazrek
et al. (1997) and solar model S of Christensen-Dalsgaard et al. (1996). It is possible
to estimate r and a from equations (3.13) and (3.17) with the given b. Following
these steps, we corrected the computed frequencies of our solar model (model ‘MS’
in Figure 1.1) and show the results in Figure 3.2. The offsets between observed and
computed frequencies are obvious in the left panel in which l = 0, 1, 2, and 3 modes are
plotted. We corrected the near-surface effect for all the theoretical p modes and using
b = 4.9 to determine r and a for each degree. From the resulted parameters listed
in Table 3.1 we can see that the offsets are nearly independent of degree l, for the
values of r for each degree modes are very close. From the échelle diagram with the
uncorrected theoretical frequencies we can also see that the offsets affect the highest
frequencies the most.

The offsets between observed and computed mixed modes frequencies become

νobs(n)− rQnlνref(n) = a

[

νref(n)
ν0

]b

, (3.18)
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Figure 3.3: Evolution tracks for the grid of models built for KOI-1299. Models
with same mass are in the same color. The error box is based on observed Teff

and derived L listed in Table 3.2. The inset plot is a blown up version of the
error box. Not all the models are plotted in the figure.

and

Qnl =
Enl

E0(ωnl)
, (3.19)

where Enl is the mode inertia (cf. equation (1.3) and E0(ωnl) is obtained by interpo-
lating to ω in the values of inertia for radial modes. In principle, Qnl is much larger
than 1, which means that the surface correction applied to mixed modes should be
less than that for the pure p modes.

We use the method described by Brandão et al. (2011) to find the best-fitting model
with the near-surface corrected frequencies. A χ2 minimization is also performed to
find the reference model that have individual oscillation frequencies closest to the
observed ones for all l and it is given by

χ2 =
1
N

∑

n,l

[

νref,corr(n, l) − νobs(n, l
σ(νobs(n, l))

]2

, (3.20)

where N is the number of modes, νref,corr(n, l) are the surface-corrected frequencies
of modes of a given reference model, and σ(νobs(n, l)) are the estimated errors for the
observed frequencies. It should be noted that the correction term in the right-hand
side of equation (3.9) only works for the frequencies of the best model. Since we do not
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Table 3.2: KOI-1299 observation properties

Parameter Value

Spectroscopic Properties

Teff (K) 4995 ± 78
log g (cgs) 3.340 ± 0.006

[m/H] −0.07± 0.10

v sin i (km s−1) 2.7± 0.5

Photometric Properties

V (mag) 12.463 ± 0.050

Kp (mag) 12.183 ± 0.020
J (mag) 10.684 ± 0.021

H (mag) 10.221 ± 0.019

Ks (mag) 10.121 ± 0.017

Asteroseismic Properties
νmax 266 ± 3

∆ν 18.59 ± 0.04

Derived Properties
M(M⊙) 1.35+0.10

−0.07

R(R⊙) 4.12+0.12
−0.08

L(L⊙) 9.48± 0.46
ρ (g cm−3) 0.02725

Age (Gyr) 3.5+0.7
−0.8

E(B − V ) (mag) 0.039 ± 0.004

d (pc) 879 ± 20

have the best model yet but only have some reference models that are close to the best
model, we can again scale the corrected frequencies of the reference model νref,corr(n, l)
from the corrected ones of the best model νbest,corr(n, l), to a good approximation, as

νbest,corr(n, l) = rνref,corr(n, l) , (3.21)

substituting which into equation (3.9), and with the approximation νbest,corr ≈ νobs,
hence we have

νref,corr(n, l) = νref(n, l) +
(a
r

)

[

νobs(n, l)

ν0

]b

. (3.22)

Thus, equation (3.20) becomes

χ2 =
1
N

∑

n,l

⎛

⎜

⎝

νref(n, l) +
(

a
r

)

[

νobs(n,l)
ν0

]b
− νobs(n, l)

σ(νobs(n, l))

⎞

⎟

⎠

2

, (3.23)

which is appropriate for pure p modes correction. For mixed modes, we can make use
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of the inertia ratio Qnl in the χ2 of equation (3.20) as

χ2 =
1
N

∑

n,l

⎛

⎜

⎝

νref(n, l) + 1
Qnl

(

a
r

)

[

νobs(n,l)
ν0

]b
− νobs(n, l)

σ(νobs(n, l))

⎞

⎟

⎠

2

, (3.24)

After the χ2 minimization for all the reference models with corrected modes, the best
model is the one that have least value of equation (3.20).

Table 3.3: KOI-1299 identified mode frequencies

n l = 0 l = 1 l = 2 l = 3
(µHz) (µHz) (µHz) (µHz)

9 194.110.018
−0.014 202.500+0.007

−0.008 209.990+0.010
−0.023

204.392+0.015
−0.010

207.713+0.006
−0.007

10 212.214+0.025
−0.020 215.394+0.008

−0.007 228.236+0.019
−0.019

219.215+0.006
−0.008

221.586+0.011
−0.019

224.590+0.016
−0.008

228.905+0.020
−0.013

11 230.704+0.009
−0.008 233.410+0.013

−0.017 247.031+0.013
−0.016 253.534+0.018

−0.034

233.410+0.013
−0.017

237.904+0.014
−0.011

240.439+0.011
−0.009

244.157+0.015
−0.009

12 249.259+0.016
−0.009 254.553+0.005

−0.006 265.636+0.011
−0.043 272.212+0.015

−0.006

254.553+0.005
−0.006

258.288+0.006
−0.008

261.490+0.003
−0.004

13 267.757+0.017
−0.016 273.216+0.007

−0.007 284.389+0.013
−0.011 291.410+0.009

−0.008

277.110+0.006
−0.008

281.091+0.006
−0.006

14 286.457+0.006
−0.009 294.131+0.015

−0.014 303.352+0.021
−0.015

297.229+0.013
−0.017

15 305.284+0.015
−0.014 315.134+0.032

−0.011

3.2 Global Parameter Constraints of KOI-1299

Using the approach mentioned in last section for asteroseismic modelling, we introduce
our work on seeking the best model for a red giant star KOI-1299 in this section. The
photometric observations of KOI-1299 were performed by Kepler which provided data
that span Kepler observation quarter 0–7 (about 19 months). After being identified
as a promising asteroseismic target, KOI-1299 was observed in short cadence mode
(δt ∼ 58.89 s) for 8 quarters. Its candidature of planetary system was raised by Kepler
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Objects of Interest (KOI) and confirmed by Batalha et al. (2013). Quinn et al. (2014)
highlight the discovery of KOI-1299b and c and studied the star and its planetary
system in detail. We provide asteroseismic modelling result for that paper.

Figure 3.4: χ2 calculated based on the surface corrected frequencies for all the
models. The values of χ2 are indicated by the color. The lower the χ2 is, the
black is more black. The x-axis is the metallicity of the models and y-axis is
the mass. The red cross indicates the location of the ’best fitting model’.

Table 3.4: KOI-1299 best-fitting model properties

Parameter Value

M(M⊙) 1.36

R(R⊙) 4.10
L(L⊙) 9.62

ρ (g cm−3) 0.02789
Teff (K) 5028

log g (cgs) 3.347

[m/H] -0.16
Age (Gyr) 2.97

The basic observation features are listed in Table 3.2 (Quinn et al., 2014). The
spectroscopic properties in the table were obtained by (Quinn et al., 2014), who ana-
lyzed the spectrographs from the Tillinghast Reflector Echelle Spectrograph (TRES,
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Figure 3.5: χ2 plotted as functions of mass (left) and metallicity (right), respec-
tively. The data points are obtained as the minima values from all the models
with the same masses or metallicity.

Fűrész, 2008) mounted on the 1.5-m Tillinghast Reflector at the Fred L. Whipple
Observatory (FLWO) on Mt. Hopkins, AZ and the FIber-fed Echelle Spectrograph
(FIES, Frandsen & Lindberg, 1999) on the 2.5-m Nordic Optical Telescope (NOT,
Djupvik & Andersen, 2010) at La Palma, Spain. For the photometric properties, Kp

is the Kepler magnitude, J , H and Ks from the 2MASS catalog (Cutri et al., 2003).
Quinn et al. (2014) used the eight quarters of short cadence Kepler data for the fre-
quency analysis. The time series was prepared by the Kepler Asteroseismic Science

Operations Centre (KASOC) filter (Handberg & Lund, 2014) using the Kepler raw
target pixel data (Jenkins et al., 2010). The KASOC filter is able to remove long-term
trends, instrument effects and transit signals, which can add unreal signals to the
power spectra. They identified 37 modes and their frequencies are given in Table 3.3.
We do not consider rotation in this thesis, so all the l = 1 mixed modes are m = 0
modes that are not affected by rotation.

We build a grid of models covering the parameters around the observed ones. We
vary the masses and Z of the models to search for the best model, namely the masses
are varied within the range of 1.25 to 1.45M⊙ with a step of 0.01 M⊙ and Z in
the range of 0.01 to 0.02 with a step of 0.001. The Y is increased when Z increases
according to the elation ∆Y/∆Z = 1.4 (Casagrande et al., 2007), and hence the [Fe/H]
of our models embrace the range of -0.25 to +0.07 (adopting (X/Z)⊙ = 0.0245). The
mixing length parameter α is fixed to be 1.94, calibrated from the solar model The
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Figure 3.6: The échelle diagram of KOI-1299. The observed frequencies are
filled triangles, whose sizes are scaled from their uncertainties. The computed
frequencies are represented by open triangles, with radial modes in red, dipolar
modes in green and quadrupole modes in orange.

evolution tracks of the grid are plotted in Figure 3.3. The black rectangle represents
the error box for observed Teff and log g from spectroscopy listed in Table 3.2. Tracks
travel through the error box have chances to be the reference models. A zoomed in
version of the error box is given as the inset plot. For the first step of model selection,
we computed the χ2 of equation (3.8), using observed parameters, Teff , L, R, log g and
∆ν, for all models locate in the error box. Then models with χ2 smaller than 3 are
selected for the next step.

By comparing the observed frequencies and computed frequencies for all the mod-
els selected through the first step, it is possible to find the best-fitting model more
precisely. Thus, we continue to calculate χ2 for the mode frequencies that are corrected
from near-surface effect, using equation (3.23) for the radial modes and equation (3.24)
for non-radial mixed modes. The results are given in Figure 3.4. Due to the fact that
there are quite a few mixed dipolar modes observed for KOI-1299 and the uncertain-
ties given by peakbagging processes are small, the resulted χ2 values are mostly very
large. In Figure 3.4 the blackish area, which covers the mass from 1.30 to 1.37 M⊙,
represents models with smaller χ2.The smallest values of χ2 are found in the order of
several hundreds, but most models have χ2 ranging from several thousands to tens of
thousands. The best-fitting model locates at the leftmost edge of the blackish area,
though the χ2 of models with [Fe/H] of about -0.01 are only a little larger. This is clear
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Figure 3.7: Upper panel, the time series of 46 LMi observed by SONG. Lower
panel, power spectrum of 46 LMi transformed from the time series shown above.
The inset plot shows the window function.

if we plot the χ2 of models against the masses and [Fe/H] separately, as in Figure 3.5
and the best-fitting model was found to have mass of 1.36 M⊙ and [Fe/H] of -0.16.
The detailed parameters of the best-fitting model are listed in Table 3.4, which are
in agreement with the observations (Table 3.2). The frequency échelle diagram of the
best model frequencies are given in Figure 3.6. Despite the small deviations between
observed and computed mixed dipolar modes, the surface-effect corrected model fre-
quencies fit the observed frequencies very well, which enhance the reliability of the
best model. We failed to give reliable errors for the model parameters because of the
extremely large χ2 values.
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Table 3.5: 46 LMi observation and best-fitting model properties

Parameter Value

Spectroscopic Properties

Teff (K) 4677± 110
log g (cgs) 2.96± 0.1

[Fe/H] −0.2± 0.10

Astrometry Properties π (mas) 33.48 ± 0.21

Asteroseismic Properties

νmax 58± 1.0

∆ν 5.80 ± 0.12

Derived Properties
L(L⊙) 34± 2

R(R⊙) 8.22 ± 0.22

M(M⊙) 1.24 ± 0.22

Best-fitting Model Properties M(M⊙) 1.25 ± 0.13

R(R⊙) 8.31 ± 0.25

L(L⊙) 32.47 ± 4.5
Age (Gyr) 3.94 ± 2.23

Teff (K) 4787± 100

[Fe/H] −0.25± 0.3
log g (cgs) 2.70 ± 0.10

3.3 The First SONG Target, Red Giant Star 46

LMi

The Stellar Observation Network Group (SONG) is a ground based network of 1m-class
telescopes with the aim of developing asteroseismology and searching for exoplanets
(Grundahl et al., 2014). Thanks to the effort of global group observations, the ex-
pected nearly uninterrupted time series is possible to provide high-quality oscillations
measurement for solar-like oscillations. The first node of SONG, the prototype of the
SONG telescope (the Hertzsprung SONG telescope), is placed at the Teide Observa-
tory, Tenerife. One of the first targets of the first campaigns with the Tenerife site is
the red giant star 46 LMi, of which the time series and power spectrum are given in
Figure 3.7. The observation length covers around two months, although regular gaps
exist on the time series, which are indicated by the window spectrum, and the effective
observation length is about 18 days. The limited observation time is not long enough
for us to resolve individual oscillation mode peaks. However, by utilizing the tech-
nique of auto-correlation, we managed to find the ∆ν to be around 5.8 µHz, which is
in agreement with the one obtained from the empirical relation between νmax and ∆ν
from Huber et al. (2011). The basic parameters that are derived from spectroscopy or
the Hipparcos mission (van Leeuwen, 2007) are listed in Table 3.5. Among the derived
properties, luminosity and radius are from literature (Piau et al., 2011) and the mass
is the mean value of the ones estimated from the scaling relation using equation (1.15)
and the interferometric radius in Table 3.5.
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Using these observed and derived properties as constraints, we can select the model
that has parameters matching them best. Due to the fact that limited observation
time could not permit us to resolve many individual frequencies and we could only
identify three modes in total, the best models are not well resolved from the χ2 grid
of Figure 3.8, which is reflected by large area of low χ2 values resulting large errors
of model parameters. The errors of model parameters are estimated by increasing the
χ2 values by one from the lowest. This can be overcome by longer observations and
global network of SONG which will efficiently reduce the gaps of the time series that
can allow more seismic parameters to be measured.

Figure 3.8: χ2 calculated based on the observation constraints for the first
SONG red giant 46 LMi. Similar to Figure 3.4, the values of χ2 are indicated
by the color. The lower the χ2 is, the black is more black. The x-axis is the
metallicity of the models and y-axis is the mass. The red cross indicates the
location of the ’best fitting model’.



Chapter 4

Mixed Modes

In main-sequence stars, p modes and g modes are trapped in their own cavities. When
stars evolve to the giant stage, the very large gravitational acceleration in the core
opens up the possibility that the two cavities could couple with each other, making
these coupled modes have p-mode character in the outer part of stars and g-mode
character in the core area, for which they are called mixed modes. Thanks to the
high quality of the photometry data from Kepler and CoRoT, many recent analyses of
oscillations in red giant (RG) stars have been done (e.g. Hekker et al., 2009; Bedding et
al., 2010; Huber et al., 2010; Jiang et al., 2011; Mathur et al., 2011; Mosser et al., 2011;
Baudin et al., 2012; Kallinger et al., 2012), which prove that using mixed modes is a
robust tool to probe the inner structure and evolution of these evolved stars (Beck et
al., 2011, 2012; Bedding et al., 2011; Mosser et al., 2012). In this chapter, we discuss
the properties of mixed modes in red giant stars theoretically. Section 4.1.1, 4.1.2
and 4.2 are from our published paper (Jiang & Christensen-Dalsgaard, 2014).

4.1 Properties of Mixed Modes

When stars evolve to post-main-sequence stages, the large gravitational acceleration
in the core increases the upper limit of the frequency range that g modes can reach,
which results in the coupling of p modes and g modes. As a result, these coupled
modes undergo so-called avoided crossing and mode bumping, their frequencies being
shifted from the regular spacings indicated by the asymptotic descriptions.

The amplitudes of solar-like p modes are large enough to be detected. On the other
hand, for a red giant star the very large mode inertia of solar-like g modes make them
almost impossible to be detected directly on the stellar surface (cf. equation (1.2).
However, when a mode have mixed character of p and g mode, its inertia increase to a
certain level, which is determined by its phase, making them observable. As shown in
the power spectrum of the red giant star KIC 3744043 (cf. upper panel of Figure 4.1),
the l = 1 modes are observed as mixed modes which form several clusters of peaks

61
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Figure 4.1: Upper panel, the background corrected power spectrum of theKepler
red giant star KIC 3744043. The mode identification was done by Mosser et al.
(2012). The peaks of l = 0, 1 and 2 modes are guide by dashed lines colored in
blue, red and grey, respectively. Lower panel, period spacing ∆Π of the l = 1
mixed modes above as a function the mode frequencies. Only mixed modes have
consecutive g-mode radial order, ng are plotted.

in the plot. Those modes having the same p-mode radial order, np, locate in the
same cluster (will be discussed later). Modes possessing more p mode character have
higher amplitudes than other mixed modes in a cluster. Mosser et al. (2012) extracted
66 modes, including 50 l = 1 mixed modes which enable us to estimate the period
spacing ∆Π simply by calculating the period differences of modes with consecutive
g-mode radial orders, ng. The resulted ∆Π are given in the lower panel of Figure 4.1.

As indicated by the asymptotic relation for g modes (cf. equation (1.16)), the
periods of pure g modes are equally spaced by ∆Π. When the mode is mixed with p
character, its period changes leading to a reduction of ∆Π. Similar to the frequency
échelle diagram of p modes, it is convenient to plot these mixed modes in a period
échelle diagram, of which the x-axis is defined as the period modulo the period spacing
∆Π. Figure 4.2 shows the period échelle diagram for all the mixed modes extracted
from KIC 3744043 power spectrum. Periods of pure g modes would stack up vertically
in this diagram, while those of mixed modes drift sidewards and form a ‘S’ shape
pattern per ∆ν-wide interval. Using this kind of period échelle diagram we may
measure ∆Π by making the mixed modes align regularly in the plot. However, this
approach is not accurate enough.
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Figure 4.2: Period échelle diagram for all the mixed modes extracted from KIC
3744043 power spectrum. Modes with same np are connected by a dashed line.

With the intention of asymptotic analysis, we follow a 1.3 M⊙ RG model with
initial solar parameters that was calculated by the ASTEC evolution code and the
ADIPLS oscillation package. Its evolutionary track is illustrated in Figure 4.3. Several
different cases of mixed modes will be discussed in the following sections. We selected
four models at different locations on the evolution track (see Fig. 4.3), including one
sub-giant model M1 and three ascending branch models M2 to M4. Details of these
models will be given in Section 4.2.1. Figure 4.4 shows the evolution of the oscillation
modes for the 1.30 M⊙ model, as functions of stellar age and radius. The frequencies
in the figure have been scaled according to the inverse of dynamical time-scale t−1 =
(R3/GM)−1/2, which makes the frequencies of acoustic modes vary little with time.
There are clear uniform spacings between p modes. On the other hand, the scaled
frequencies of gravity modes (see solid lines at the lower-left corner) have an increasing
trend with age, which is a consequence of the increase in N . However, the striking
feature of the frequencies in Figure 4.4 is the interaction between the dipolar acoustic
and gravity modes. At an early age when the star just leaves the main sequence, the
high-order modes are only pure p modes, while g modes are located at low frequency
but gradually increasing with time. When the frequencies of the g modes are high
enough to interact with p modes, the horizontal lines of p modes are bumped up to
relatively higher values, which breaks the equally spaced pattern of p modes. These
interactions take place through a series of avoided crossings when the two modes
exchange nature. On the other hand, as the star ages, g modes dominate the whole
frequency range, while p modes can only be revealed in terms of mixed modes. In this
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Figure 4.3: Evolution track of the 1.30 M⊙ model. The red part covers all
the modes shown in Figure 4.4. The three crosses indicate the selected models
coloured the same way as in Figure 4.4 plus an additional more evolved RG
model M4 (purple cross).

case, frequencies will be diminished when avoided crossings happen, which form the
very dense p-dominated mixed modes (see Section 4.1.2) in the time sequence that
still can be observed as very dense horizontal lines in Figure 4.4.

The detection of mixed modes reveals the mystery of g–mode behaviour in solar-
like RG stars. The variations of their mode inertia, frequencies, energy inputs lead us
directly to the study of the stellar interior. We will introduce the character of mixed
modes theoretically and asymptotically, but to very good approximations.

4.1.1 Asymptotic analysis

The behaviour of oscillations can be described by the set of differential equations (1.30)
and (1.31), where v and w are related to the oscillation displacement δr in radial and
horizontal direction, respectively. Solving these equations can give us the idea of the
eigenfunctions which are helpful for the analysis of different modes. However, it is
numerically difficult to solve them. Unno et al. (1989) solved the set of differential
equations (1.30) and (1.31) asymptotically to obtain v and w using the JWKB method
(or Jeffreys, Wentzel, Kramers and Brillouin; Gough 2007) and found that there is a
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Figure 4.4: Scaled oscillation frequencies as a function of age and radius in the
1.30 M⊙ model. The models in the upper panel start from the subgiant to the
RG stage, while the lower panel shows a small segment of the solutions around
the age of 4.904 Gyr. On the y-axis, R is the surface radius of the model and R0

is the zero-age main-sequence radius. Modes with the same radial order have
been connected in the same line. The dashed lines are for radial modes and the
solid lines for l = 1. The three vertical lines indicate three models. Together
with the last model they are discussed in detail, and their locations are shown
in the evolution track of Figure 4.3. Evolution of one g mode with n = −50 is
highlighted as a red curve and is described in Section 4.1.2. The computations
of frequencies stop at the acoustic cut-off frequency, which leaves the blank area
in the upper figure.
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a

b

c

Figure 4.5: Propagation diagram of model M3. The buoyancy frequency (solid
curve) and Lamb frequency (dashed curve, l = 1) are shown in terms of cor-
responding cyclic frequencies, against fractional radius r/R. The axes are in
logarithm. The horizontal line indicates the mode frequency ν = 315.26 µHz,
which presents mixed-mode character. The locations of turning points of equa-
tion (1.32) are indicated by the letter a, b and c, which divide the model into
different propagation zones.

general eigenvalue conditions for p and g modes ,
∫ r2

r1

Kdr = π(n+ ϵ) . (4.1)

Here n is the mode order, and r1 and r2 are adjacent turning points (where K = 0),
between which K2 is positive. ϵ is a phase correction that depends on the structure
of the model near the turning points. The dependence of ϵ on frequency is implied
in the definition of K, which can be explored numerically by using equation (4.1)
(Christensen-Dalsgaard, 1984). We note that the derivations of equations (1.30) and
(1.31) neglected terms that may lead to singularities at critical points in the model,
although typically in evanescent regions where K2 < 0. This is explicit in a second-
order equation, exact in the Cowling approximation, presented by Gough (1993), which
is of the same form as equations (1.30) and (1.31) but expressed in terms of a different
dependent variable.

The asymptotic relations for pure p and g modes are given in equation (1.8)



CHAPTER 4. MIXED MODES 67

and (1.16). In order to discuss a similar asymptotic relation for mixed modes, the
propagation diagram of model M3 (see Section 4.2.1 for details of the model) is shown
in Figure 4.5 with eigenfrequency of 315.26 µHz indicated by the horizontal line that
intersects with the characteristic frequencies at turning points ‘a’, ‘b’ and ‘c’. In this
case, g modes are trapped in the interval between the layer very close to the innermost
point ‘a’ and ‘b’, while p modes travel in the outer part of the star between ‘c’ and the
surface, where K2 is positive for both cases. The region between ‘b’ and ‘c’ is called the
evanescent region where K2 is negative and the eigenfunctions behave exponentially.
Equation (4.1) can be considered as an eigenvalue condition for p and g modes (Unno
et al., 1989). For g modes:

∫ rb

ra

Kdr ≈ π(n+ 1/2 + ϵg), (4.2)

and for p modes:
∫ R

rc

Kdr ≈ π(m+ ϵp), (4.3)

where n and m are integers that also define the orders of p and g modes, individually.
In the present case, with a radiative core, ra is very close to the centre. If there is a
convective core, the deeper boundary of g modes is outside the core.

Unno et al. (1989) describe an eigenvalue condition for mixed modes using a co-
efficient q measuring the coupling strength between gravity-wave and acoustic-wave
cavities:

cot

(∫ rb

ra

Kdr

)

tan

(∫ R

rc

Kdr

)

= q . (4.4)

[A qualitatively similar relation was obtained by Christensen-Dalsgaard (2012) from
the analysis of a simple toy model.] As discussed below, equation (4.4) has been a very
powerful tool in the analysis of mixed modes in RGs (e.g., Mosser et al., 2012), with
the coupling strength q obtained by fitting the expression to observed or computed
frequencies of oscillation.

It is of obvious interest to investigate how the coupling strength reflects the prop-
erties of the stellar interior. From a simple analysis of equations (1.30) – (1.32), Unno
et al. (1989) obtained the estimate

qint =
1
4
exp

(

−2

∫ rc

rb

|K|dr
)

. (4.5)

We note that this is obviously questionable, given the problems with singularities
discussed above. Even so, we find it interesting in the following to compare qint as
computed from equation (4.5) with the results of frequency fits.

When the coupling is very weak, q is close to 0. It is reasonable to estimate that
q is a small quantity and there is a condition that satisfies equation (4.4):

∫ rb

ra

Kdr ≈ π(n+ 1/2± ϵ)

∫ R

rc

Kdr ≈ π(m∓ ϵ)

⎫

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎭

. (4.6)



CHAPTER 4. MIXED MODES 68

Figure 4.6: The ratio of dimensionless mode inertia in the p cavity over the
one in the g cavity of the three models, as a function of frequency. The blue
crosses represent the ratios for each oscillation mode. Green circles are the most
g-m-like mixed modes while red circles indicate the most p-m-like mixed modes.

It should be noted that equation (4.4) is the general condition even for pure p and
g modes if we take q = 0. When mixed modes occur, the small value of q leads to
deviations from pure oscillation modes, which are indicated by corresponding ± and
∓ signs in equation (4.6). From equation (1.32) K only depends on the frequency
for a given model. So the occurrence of oscillation modes is also determined by the
frequency. Hence let us consider a model with frequency gradually increasing. In the
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very beginning, the frequencies are very small making the integrals in equation (4.2)
so great that a large number of g modes satisfy equation (4.2). However, there is no p
mode existing at the very low frequency range because Sl ≫ ω2. As the frequency in-
creases, the region in which gravity waves are trapped becomes narrower and therefore
the integral of K monotonically decreases. But once the frequency is greater than Sl

the integral over acoustic-wave zone monotonically increases. If the frequency is high
enough to make gravity and acoustic waves couple with each other meaning that the
integrals of K approach (n−1/2)π and (m+1)π at the same time, the eigenvalue con-
dition equation (4.6) is satisfied and an avoided crossing occurs. When the frequency
increases beyond N , only equation (4.3) can be satisfied by p modes.

4.1.2 Classification

With the help of models we can study properties of mixed modes by observing some
parameters that characterize oscillation modes, such as kinetic energy (Unno et al.,
1989) or mode inertia . The normalized mode inertia is given by equation (1.3). For a
mode that is dominated by p-mode nature, the inertia is contributed mostly by the p
cavity, which is mainly from ξr. For a mixed mode that behaves predominantly g-mode
like, the inertia would be very large owing to the high density in the core area and
hence is dominated by ξh in the g cavity (Aerts et al., 2010). Therefore it is convenient
to measure the nature of mixed modes with the ratio of mode inertia in the p cavity
over that in the g cavity:

ζ =
Ep

Eg
≈

∫ R

rc
ξ2r ρr

2dr
∫ rb
ra

L2ξ2hρr
2dr

. (4.7)

Unlike Mosser et al. (2012) dividing mixed modes into two categories by the size
of the amplitude in the core (see also Goupil et al. 2013), we divide them by the local
extreme values of ζ, namely those mixed modes having the local maxima of ζ and
their vicinities are called p-m modes and those at the local minima correspond to g-m
modes. Although low-frequency mixed modes are principally dominated by g-mode
nature (ζ ∼ 0), they are always coupling with p modes at different levels. When the
coupling effect is strong, the mode tends to have more p-mode nature which leads to
an increase in ζ but decrease in frequency. On the other hand, for larger frequency
modes where the p character dominates and ζ is very large (ζ ≫ 1), their frequencies
would be bumped up to a higher value but their ζ values are diminished when the
coupling with the g-mode character is strong. The frequencies of these p-m modes are
close to the frequencies of pure dipolar p modes, because they are little affected by the
g cavity, and they can be observed clearly. Similarly, g-m modes are close to pure g
modes. Additionally, mixed modes that have nearly equal mode inertia contributions
from the envelope and the core take values of ζ of the order of 1. They also have
a significant g component that is valuable for stellar interior research, and may also
be observed directly. The variation of ζ in dipolar modes with frequency is shown in
Figure 4.6, p-m and g-m modes being illustrated by colored dots.

Since M1 is a subgiant model, there exist high-order p modes as well as g modes.
For mixed modes in the g-mode frequency range, g-m modes are expected to align
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Figure 4.7: Frequency échelle diagram of oscillation modes (n > 0) in M1.
Modes of different degrees are indicated by diamonds (l = 0), crosses (l = 1)
and triangles (l = 2). Green and red circles correspond to the same kinds of
mixed modes as in Figure 4.6. To guide the eyes, the dotted line connects the
dipolar mixed modes. Mixed modes for l = 2 modes are suppressed in the plot.

vertically in the middle of the S-pattern in the period échelle diagram, while modes
affected by p-mode character shift sidewards as p-m modes locating at the edge of the
S-pattern. For higher frequency mixed modes which have significant p-mode nature, p-
m modes line up more or less vertically as radial modes do in frequency échelle diagram
(red circles in Figure 4.7) while modes affected by g-mode character shift sidewards
as g-m modes positioning at the edge of each pattern (green circles in Figure 4.7).

In summary, when the coupling is strong, g-dominated mixed modes usually have
small values of ζ which increase because of the kinetic energy contributions from
the envelope increase. In contrast, the large ζ values of p-dominated mixed modes
decrease as a result of the effect by g-m modes. This is clearly seen by the study
of the evolutionary variations of a g mode (n = −50), in terms of frequency and ζ
(Fig. 4.8). The frequency of the mode increases smoothly at an early age, though
there are some tiny influences from p modes which make ζ grow a little but remain
small (ζ ≪ 1). When it ages to around 4.8 Gyr, the frequency decreases at the point
where the local maximum of ζ is close to 1, which means the effect of avoided crossing
is much greater than earlier. And a series of crossings followed with decreasing period
means the p-mode character is becoming obvious because of the increasing coupling,
and the possibility of this former pure g mode being detected is increasing too.
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Figure 4.8: The evolutionary view of frequency (red solid line) and ζ (blue dash-
dotted line) of a g mode (n = −50). The frequencies are indicated by the right
y-axis.

4.1.3 Eigenfunctions of oscillation modes

In order to solve the set of differential equations (1.30) and (1.31), we may make use
of the Airy functions. The solution y to the differential equation that has the form of

d2y
dx2

+ xy = 0 , (4.8)

is represented by
y = aAi(x) + bBi(x) , (4.9)

where Ai(x) and Bi(x) denote the first and second kind of the Airy functions, respec-
tively, which are related to the Bessel functions of 1/3 order as

Ai(x) =
1
3

[

x1/2J
−1/3

(

2
3
x3/2

)

+ x1/2J1/3

(

2
3
x3/2

)]

(4.10)

Bi(x) =
1√
3

[

x1/2J
−1/3

(

2
3
x3/2

)

− x1/2J1/3

(

2
3
x3/2

)]

(4.11)
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and a and b are constant coefficients. For large values of |x| and when x < 0, Ai(x)
and Bi(x) have the following asymptotic behaviour:

Ai(x) ∼ 1

2
√
π
(−x)−1/4 exp

[

−2
3
(−x)3/2

]

(4.12)

Bi(x) ∼ 1√
π
(−x)−1/4 exp

[

2
3
(−x)3/2

]

(4.13)

and when x > 0

Ai(x) ∼ 1√
π
x−1/4 cos

[

2
3
x3/2 − π

4

]

(4.14)

Bi(x) ∼ − 1√
π
x−1/4 sin

[

2
3
x3/2 − π

4

]

. (4.15)

It is derived by Unno et al. (1989) that the form of the function w is given by

w = |K|−1/2

(∣

∣

∣

∣

3
2

∫ r

ra

|K|dr
∣

∣

∣

∣

)1/6

[aAi(x) + bBi(x)] , (4.16)

where x is expressed by

x = sgn(K2)

(∣

∣

∣

∣

3
2

∫ r

ra

|K|dr
∣

∣

∣

∣

)2/3

(4.17)

and the symbol sgn(x) is a function that extracts the sign of x. On the other hand,
the form of v is given by

v = sgn(Q)|K|−1

(

dw
dr

+
1
2

d ln |Q|
dr

w

)

≃ sgn(Q)|K|−1 dw
dr

, (4.18)

where Q is

Q(r) =
1
r2

(ω2 −N2)h(r)−1 , (4.19)

h(r) being

h(r) = exp

[
∫ r

0

(

N2

g
− g

c2

)

dr

]

> 0 . (4.20)

Thus ξr and ξh, which are directly related the eigenfunctions of displacement vector
(cf. equation (1.27)), are related to v and w through

ξr = ρ−1/2c−1r−1

(∣

∣

∣

∣

1− S2
l

ω2

∣

∣

∣

∣

)1/2

v (4.21)

and
ξh = ω−2ρ−1/2r−2(|N2 − ω2|)1/2w . (4.22)

For the most complicated case of a mixed mode, the mode has g-mode character in
the core area and p-mode character near the surface, and a evanescent region between
them. Substituting x of the p, g mode and the evanescent regions into equation (4.16)
and (4.18), we can estimate w and v which leads to ξr and ξh directly. Figure 4.9 shows
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computed eigenfunctions for a p-m mixed modes in Figure 4.8. The mode has nearly
equal mode inertia ratio between p and g cavity (ζ ∼ 1). It is clear form the figure
that the amplitude ξr is large in the outer part of the star and the oscillation mode is
dominated by p-mode character in that region, while ξh is the dominant displacement
in the very interior area where g-mode character is dominant. Counting the zeros of ξr
and ξh may give us the number of np and ng. However, it is possible to estimate np and
ng directly from the phase of asymptotic relations (see Section 4.3). The evanescent
region, which is between the p and g mode region, has a turning point on each side
where K = 0 and hence x = 0 from equation (4.17). This makes the asymptotic
expressions of Airy functions Ai(x) and Bi(x) break down, which require |x| to be
very large meaning the oscillation should far away from the turning points. Therefore,
this blemish of asymptotic Airy functions for the area around turning points leads to
the big jumps in the blown up version of ξr in the evanescent region which is show in the
upper right panel of Figure 4.9. The left turning point shows the position of the outer
boundary of the convective core and the right one shows the base of the envelope. Also
the lack of a strict treatment of turning point will lead an underestimate of theoretical
coupling strength (see Section 4.2).

Figure 4.9: Eigenfunctions, on an arbitrary scale, for a selected mixed mode
(l = 1, n = −50, ν = 278.25µHz and ζ ∼ 1) from Figure 4.8. The upper two
panels show scaled radial displacement eigenfunctions, while the lower two show
horizontal displacement eigenfunctions, on different radius scale. The base of
the convective envelope locates at about 0.09 R. The y-axis for the four plots
are in the same order. The horizontal line indicate the zero point of y-axis.

However, the asymptotic expressions of Airy functions give good estimation for
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the eigenfunctions of pure p and g modes under the condition of asymptotic analysis.
For a p modes, ω2 ≫ S2

l and ω2 ≫ N2

K2 ≃ ω2

c2

(

1− S2
l

ω2

)

, (4.23)

hence

w ≃ a|K|−1/2 1√
π
cos

(
∫ r

rt

|K|dr − π

4

)

(4.24)

if we take b = 0 due to the boundary conditions (Unno et al., 1989) and

v ≃ a|K|−1/2 1
π
sin

(∫ r

rt

|K|dr − π

4

)

, (4.25)

which lead to the eigenfunctions given by

ξh ≃ a√
π
ω−3/2

(

c
ρ

)1/2

r−2
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l

ω2

)
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cos

[
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ω
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ω2

)1/2

dr − π

4

]

(4.26)

where rt denotes the position of turning point. and

ξr ≃ − a√
π
(cρ)−1/2r−1ω−1/2

(

1− S2
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ω2

)1/4

sin

[
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rt
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. (4.27)

For g modes, ω2 ≪ S2
l , N

2, then

K2 ≃ L2

r2

(

N2

ω2
− 1

)

, (4.28)

and similarly the eigenfunctions become

ξh ≃ − a√
π
L−1/2ρ−1/2r−3/2ω−2
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− 1

)1/4
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and

ξr ≃
a
π
L1/2ρ−1/2r−3/2

(
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)1/4
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. (4.30)

For mixed modes, the eigenfunctions of p-mode and g-mode regions can be estimated
as the same for the pure modes case, and those of the evanescent region, except near
the turning points, can be approximated by

ξh ≃ a√
π
(Lρ)−1/2ω−2r−3/2

{

− 1
2
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)}

(4.31)
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Table 4.1: Fundamental parameters of the 1.30 M⊙ giant models. R and L
are surface radius and luminosity, provided in units of the solar values, Teff is
effective temperature, νmax is the estimated frequency at maximum power and
nmax is the corresponding radial-mode order, ∆ν is the acoustic-mode frequency
spacing obtained from fitting the frequencies and∆νint was determined from the
asymptotic integral, equation (1.9), and ∆Πint is the asymptotic period spacing
of dipolar modes (cf. equation 1.17).

Model M1 M2 M3 M4

R/R⊙ 2.36 2.88 4.20 6.22
Teff (K) 5347.8 4884.9 4772.2 4651.9

L/L⊙ 4.101 4.239 8.189 16.272

νmax (µHz) 745.24 513.78 252.17 117.62
nmax 16 15 13 11

∆ν (µHz) 43.38 31.62 17.88 9.89

∆νint (µHz) 45.32 33.19 18.79 10.38
∆Πint (s) 191.69 111.73 87.78 75.50

and

ξr ≃
a√
π
(Lrρ)−1/2c−1
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1
2
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(4.32)

4.2 Coupling Strength

For evolved stars, the oscillation frequencies shift from their original values because of
the avoided crossing which mixes the p and g mode characters together. The strength
of the coupling between p and g modes can be measured by the coefficient q which is
given in equations (4.4) and (4.5). The strength varies for stars at different evolution
stages and varies for different modes in a star. The information it carries for the
mixture of the two different oscillation modes character and for the stellar structure
is still unclear. Thus, it is of obvious interest to investigate how the coupling strength
reflects the properties of the stellar interior.

4.2.1 Frequency Fitting

While a mode is undergoing avoided crossing its frequency deviates a little from its
original value which makes K satisfy condition equation (4.6). One can calculate K
approximately in different regions separated by turning points (a, b and c in Fig. 4.5)
(see Christensen-Dalsgaard, 2012).It should be noted that these approximations are
valid except near the turning points. Therefore the integral of K in the outer region
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is closely related to ∆ν and that in the inner region to ∆Π in this asymptotic analysis
(see equations 1.9 and equation 1.17). Substituting ∆Π and ∆ν into equation (4.4)
yields equation (9) in Mosser et al. (2012):

ν = νnp, l=1 +
∆ν
π

arctan

[

q tanπ

(

1
∆Π1ν

− ϵ

)]

, (4.33)

where νnp, l=1 is the uncoupled solutions of p modes and ϵ is the phase shift in equa-
tion (1.16) which makes the obtained periods close to (n + 1/2 + ϵ)∆Πl when the
coupling is weak (Mosser et al., 2012). Equation (4.33) is the expression for the l = 1
mixed modes coupled to the pure p modes νnp, l=1. It gives a more intuitive view of the
frequency change from pure p modes with only several observable seismic parameters
than equation (4.4) that demands the knowledge of the structure of stars. However,
a similar expression for p-dominated mixed modes coupled with pure g modes can
also be acquired, though the asymptotic relations break down for low radial order
modes. But we only focus on the former case in this thesis. With the assumption
of the asymptotic relation for p modes, one can approximate νnp, l=1 which can be
affected by the correction term ϵ to some extent. ∆ν is obtained as the mean value
of frequency spacings of radial modes, assumed also to be valid for dipole modes. The
frequencies ν are either from models or observations.

Figure 4.10: Period échelle diagrams for the three models M1 − M3. The x-axis
presents the period modulo the period spacing ∆Π gained from fitting and the
y-axis is the frequency. Crosses linked by dashed lines indicate the theoretical
frequencies. Diamonds correspond to the asymptotic fit. Green circles are the
most g-m-like mixed modes while red circles indicate the most p-m-like mixed
modes.

Here, we only analyse theoretical modes and use those around the frequency νmax

of maximum power, namely within the range [νmax − 3∆ν, νmax + 3∆ν]. Since νmax

is not given directly from models, it is scaled from the solar value using the usual
scaling relations (Kjeldsen & Bedding, 1995). Hence, ∆Π, q and ϵ are left as open
parameters and their values are gained after a least-squares fit to frequencies by the
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Figure 4.11: Enlarged period échelle diagram for model M4.

Table 4.2: Results, averaged over the interval [νmax−3∆ν, νmax+3∆ν], of fitting
the asymptotic relation, equation (4.33), to model frequencies.

Model M1 M2 M3 M4

∆Π (s) 191.74 111.98 88.80 75.58

q 0.40 0.23 0.12 0.10
ϵ 0.8 0.1 0.2 0.27

method of grid searching. We constructed grids of q and ϵ from 0 to 1 with a step
of 0.01 and 0.1, respectively. ∆Π is searched around a preliminary value, which is
estimated by equation (1.17) when fitting only theoretical frequencies, within a small
range ([∆Π − 3 s,∆Π + 3 s]). However, if we are confronting observed frequencies,
∆Π is estimated between ∆Πobs and 3∆Πobs, where ∆Πobs is the measured value of
the period spacing between bumped mixed modes and significantly smaller than ∆Π.
In this case, more computing time is required, but this is beyond the scope of this
thesis. In reality, the coupling strength varies with frequency, but the result from this
asymptotic fitting is the mean value ⟨q⟩.

We selected four models at different locations on the evolution track (see Fig. 4.3).
The first model (M1) is in the middle of the subgiant branch when p modes are still
dominating the high-frequency range. The second model (M2) lies at the base of
RG branch as low-order g modes penetrate into the p-mode area in frequency. The
third model (M3) is on the ascending branch so that g modes are reigning over the
frequency range with p modes penetrating in them. The last one (M4) is farther up
on the ascending branch. Their fundamental parameters are given in Table 4.1. For
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Table 4.3: Oscillation parameters ωp,ωg and q for model M3 obtained by fitting
computed period spacings to equation (4.44), for individual acoustic resonances
characterized by νp-m. ∆Π and ∆ν were calculated from the individual values
of ωg and ωp. For comparison, we also show qint calculated from equation (4.5)
at each νp-m, and qfit resulting from fitting frequencies within [νp-m − 1

2
∆ν,

νp-m + 1
2
∆ν] to equation (4.33).
νp-m ωg ωp ∆Π ∆ν q qint qfit
(µHz) (s−1) (µHz) (s) (µHz)

42.22 0.226 42.10 87.51 21.05 0.33 0.031 0.38
62.28 0.226 41.42 87.30 20.71 0.20 0.053 0.25

82.04 0.227 41.05 87.02 20.53 0.16 0.070 0.18

101.79 0.228 40.67 86.72 20.34 0.15 0.084 0.14
120.19 0.229 40.20 86.32 20.10 0.14 0.096 0.13

137.64 0.230 39.44 85.87 19.72 0.14 0.107 0.12
155.92 0.232 38.82 85.19 19.41 0.14 0.116 0.13

172.93 0.233 38.36 84.77 19.18 0.16 0.123 0.12

190.14 0.235 37.93 84.09 18.97 0.17 0.129 0.11
207.39 0.240 37.60 82.36 18.80 0.17 0.134 0.12

224.24 0.238 37.37 83.06 18.68 0.22 0.139 0.12

242.71 0.242 37.23 81.49 18.62 0.20 0.144 0.15
259.86 0.246 37.05 80.12 18.53 0.20 0.149 0.11

the seismic parameters, the large frequency separations ∆ν are the mean value taken
from radial modes, the period spacings of dipole g modes ∆Πint are the theoretical
values derived from the integral of N (equation 1.17) while similarly ∆νint are from the
integral of the inverse of the sound speed (equation 1.9), and nmax is the radial order
at νmax. Since g modes are equally separated in period, it is reasonable to plot them in
a period échelle diagram, which is just like the classical échelle diagram for p modes,
but the x-axis is defined as the period modulo the period spacing ∆Π. Fig. 4.10 shows
asymptotic fits to theoretical frequencies of the first three models. Those g-mode-like
modes are located in the middle of the pattern, at 1/ν = ∆Π/2 (modulo ∆Π) if ϵ is
0. As noted by Bedding et al. (2011), the S-pattern per ∆ν-wide interval observed
in Fig. 4.10 is the outcome of coupling. The reason for the g-m modes in M1 not
lining up well is that the radial orders of these modes are relatively low and hence
the asymptotic theory is not quite valid. As seen in M3 of Fig. 4.10, the alignment is
much better as there are adequate high-radial-order modes. A higher coupling strength
would result in gentle central patterns in each segment. The qualitative agreement of
the fit to M1 mixed modes is not good except for medium radial orders, as expected.
This is because q varies with frequency and the mean value ⟨q⟩ used in the fitting
usually deviates from the real one of each segment. The agreement gets better as the
model evolves (see the additional blown-up example of M4 in Fig. 4.11), but the fitting
gives an abnormally high q for M1 and its vicinity (Table 4.2). Hence, for subgiant
models, our obtained mean value of q is not close to the actual coupling coefficient
for low-radial-order g mixed modes, which is the reason that this asymptotic fitting
method is not suitable for mixed modes in subgiant models. Benomar et al. (2012)



CHAPTER 4. MIXED MODES 79

introduced a way to fit mixed modes in subgiant stars1. However, the fitting provides
reasonable q and ∆Π for models on the ascending branch.

Figure 4.12: Coupling strength obtained from different means indicated by dif-
ferent coloured lines against radius covering all the ascending-branch models in
Fig. 4.4. The ‘Fit’ stands for the asymptotic fitting method (the same as in Ta-
ble 4.2). The ‘Integral’ results are calculated from the approximate integral in
equation (4.5) and they are the average value of νnp, l=1 modes (see Table 4.3).
Only modes over the interval [νmax − 3∆ν, νmax + 3∆ν] are taken into account
for a given model for both methods. The vertical line indicates the location of
model M3, and M4 is at the end of the figure.

Fig. 4.12 collects the results along the evolution sequence, comparing averages of
the fitted values of q with the approximate value obtained from the integral in equation
(4.5). As indicated, the fitting results for q are somewhat larger than the values of qint
in more evolved models. This is hardly surprising, given the problems associated with
the simplified asymptotics, particularly as used in the evanescent region. Concerning
these obvious limitations, a relatively simple test is to redo the analysis for frequencies
computed in the Cowling approximation. We have done so for model M4, at the right-
hand edge of Fig. 4.12. The average q resulting from the fits to frequencies computed
in the Cowling approximation is lower by about 0.02 than when using frequencies
computed with the full equations; this, probably coincidentally, brings the results of
the fit substantially closer to qint. A more detailed analysis is beyond the scope of

1They found that the coupling strength of the dipole mixed modes is predominantly a
function of stellar mass and appears to be independent of metallicity.
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this thesis, however. A solution of ϵ can also be found after the fitting. Although it
decides the absolute position of the pattern in the period échelle diagram, it has little
influence on the solutions of the fitting (Mosser et al., 2012).

4.2.2 Period Spacing

A dispersion relation can be approximated from equation (4.4):

sin(ω/ωp) cos(ωg/ω)− q sin(ωg/ω) cos(ω/ωp) = 0 (4.34)

where

ωg = L

∫ rb

ra

N
r
dr ≃ 2π2

∆Π
, ωp =

(
∫ R

rc

dr
c

)

−1

≃ 2∆ν. (4.35)

Although the dispersion relation differs from equation (25) in Christensen-Dalsgaard
(2012), we follow derivations in Christensen-Dalsgaard (2012) and rewrite equation (4.34)
as:

C(ω) cos(ωg/ω + Φ(ω)) = 0, (4.36)

where C(ω) =
√

sin2(ω/ωp) + q2 cos2(ω/ωp) and Φ(ω) satisfies

C(ω) cosΦ(ω) = sin(ω/ωp) (4.37)

C(ω) sinΦ(ω) = q cos(ω/ωp). (4.38)

From equation (4.36), it is obvious that the eigenfrequencies satisfy

R = ωg/ω + Φ(ω) =

(

n+
1
2

)

π. (4.39)

Hence the frequency spacing between adjacent modes nearly satisfies

∆ω ≃ ∆R(dR/dω)−1 = π(dR/dω)−1, (4.40)

and the corresponding period spacing is approximately given by

∆Π ≃ −2π∆ω
ω2

= −2π2

ω2

(

dR
dω

)

−1

=
2π2

ωg

(

1− ω2

ωg

dΦ
dω

)

−1

.

(4.41)

The term outside the parentheses of equation (4.41) is the period spacing for pure
g modes, and variations of ∆Π of mixed modes originate from the behaviour of Φ
which is illustrated in Christensen-Dalsgaard (2012). Φ is almost constant and there-
fore its derivative is around zero except near acoustic resonances where Φ changes
rapidly, causing a vigorous variation in the period spacing. At the centre of an acous-
tic resonance, the mode frequency is exactly νnp, l=1 in equation (4.33), and Φ = π/2,
ω/ωp = kπ for integer k. We introduce δx = ω/ωp − kπ that represents how much a
mode deviates from the centre of an acoustic resonance and expand Φ as δΦ = Φ−π/2
in terms of δx. Equations (4.36) and (4.39) yield tan(δΦ) = −q−1 tan(δx), expanding
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Figure 4.13: Period spacings for g modes of model M3 (blue crosses) against
angular frequency, with solutions to the asymptotic expression equation (4.44)
(red diamonds). Green circles are minimum spacings in each segment computed
from equation (4.45) using qfit listed in Table 4.3. The horizontal dotted line is
the theoretical period spacing of pure g modes defined by equation (1.17). The
lower panel shows detailed properties of the second and third segments.
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which to the second order gives

δΦ ≈ − δx
√

2
3 δx

2 + q2
, (4.42)

which leads to the derivative of Φ as

dΦ
dω

=
d
dω

(δΦ+
π

2
)

=
q2

ωp(q2 + 2
3δx

2)3/2

(4.43)

This leads to the final approximation to ∆Π after plugging equation (4.43) into equa-
tion (4.41),

∆Π ≃ 2π2

ωg

(

1 +
ω2

ωgωp

q2

(q2 + 2
3 δx

2)3/2

)

−1

. (4.44)

Therefore the variation of the period spacing is determined by the coupling strength
and δx. The minimum period spacing occurs when the mode is extremely close to the
centre of the acoustic resonance:

∆Πmin ≃ 2π2

ωg

(

1 +
ω2

qωgωp

)

−1

. (4.45)

Figure 4.14: Same as the upper panel of Fig. 4.13 for model M4.
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Figure 4.15: Coupling strength as a function of stellar mass. Models with
different metallicity are in different colors.

In equation (4.44), ωg relates to the ∆Π of g-m modes, ωp corresponds to around
twice ∆ν, and δx ≈ 0 indicates a p-m mode. Therefore, equation (4.44) clearly
provides another approach to acquiring ∆Π, ∆ν as well as q by fitting the period
spacings if we have adequate g-m modes. To do this, we focused on M3 which has a
large amount of high-order g modes. Fig. 4.13 presents the fit to the period spacings of
M3. The period spacings of the g-m modes, which are located on the side of each dip,
are very close to the theoretical ∆Π calculated from equation (1.17), while the p-m
modes lie at the bottom of each dip, as a result of the increase in frequency of these
modes. We fit each dip separately in the range [νp-m −∆ν/2 ; νp-m +∆ν/2]. Those
modes at the bottom of each dip are regarded as p-m modes, which are mixed modes
containing gravity mode character as well. They are also possible for detection if their
ζ are large enough. As shown in Fig. 4.13, the asymptotic dispersion relation leads to
an excellent fit to the theoretical period spacings for low-frequency modes. However,
when the g modes are not dense enough, ωg is underestimated and so therefore is ∆Π.
The results are displayed in Table 4.3. The coupling strength relates to the depth and
width of each dip. According to equation (4.45) the depth of each dip increases with
decreasing q, but the width decreases reversely and therefore the chances of finding a
g mode decrease too. However, in this exercise we found that the reductions of the
period spacing are also very sensitive to the mode frequency. For instance, for low-
frequency modes, the small value of the maximum reduction in period spacing of M3

gives very high q value, compared to the results from other approaches, though they
lead to good period spacing calculated from ωg and mean frequency spacing derived
from νp-m (∆Π = 87.41 ± 0.62 s, ∆ν = 18.04 ± 0.16 µHz). We also analysed the
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even more evolved model M4. The resulting q are acceptable in this case thanks to
sufficient g modes but the frequency dependence still exists (Table 4.4 and Fig. 4.14).
In summary, the outcome of the asymptotic dispersion relation works more robustly
for more evolved stars where g modes are dense, but the results have a strong frequency
dependence.

Table 4.4: Oscillation parameters for model M4 obtained by fitting computed
period spacings to equation (4.44), for individual acoustic resonances character-
ized by νp-m. See the caption to Table 4.3.

νp-m ωg ωp ∆Π ∆ν q qint qfit
(µHz) (s−1) (µHz) (s) (µHz)

23.26 0.262 23.25 75.38 11.63 0.05 0.005 0.13

34.26 0.262 22.83 75.24 11.42 0.11 0.012 0.10

45.24 0.263 22.61 75.14 11.30 0.10 0.021 0.11
55.72 0.263 22.30 75.01 11.15 0.09 0.031 0.12

65.29 0.264 21.73 74.88 10.87 0.09 0.041 0.10
74.52 0.264 21.31 74.76 10.66 0.10 0.051 0.13

83.98 0.265 21.02 74.59 10.51 0.10 0.060 0.14

93.38 0.265 20.73 74.35 10.36 0.10 0.069 0.09
102.87 0.266 20.58 74.27 10.29 0.13 0.078 0.13

112.51 0.267 20.48 73.99 10.24 0.13 0.086 0.11

122.64 0.269 20.39 73.48 10.19 0.13 0.094 0.10
132.51 0.269 20.34 73.28 10.17 0.15 0.102 0.10

142.48 0.271 20.30 72.92 10.15 0.17 0.109 0.09

152.40 0.273 20.28 72.40 10.14 0.17 0.116 0.08
162.01 0.272 20.25 72.49 10.13 0.19 0.124 0.09
172.33 0.279 20.24 70.82 10.12 0.16 0.132 0.10

4.2.3 A little more about coupling strength

As discussed above, the coupling strength theoretically depends on the extent of the
evanescent region between the p- and g-mode cavity. However, the relation between
coupling strength and stellar parameters is still not well understood. We computed
models with masses ranging from 1.10 to 1.40 M⊙ and Z from 0.01 to 0.02, with
a fixing X and α. The models stop when they evolve to the stage that have large
frequency separations close to 10.5 µHz. Our models having ∆ν of 10.5 µHz are
red giant models. Using the fitting method for mixed mode frequencies, we obtained
their coupling strength and plotted it as a function of mass in Figure 4.15. Similar
to the results we obtained in Figure 4.12, here the resulted coupling strength have
variations with masses in the order of 0.02. The variations in low-mass models are
relatively larger than those in high-mass models. We found the strength changes little
with mass but more with metallicity. The strength has an very obscure tendency to
decrease when model mass increases, but its dependence on metallicity is much clearer.
Models with lower metallicity tend to have larger coupling strength than those with
higher metallicity. However, it should be noted that in this work, the effects of varying
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α has not been tested, which definitely should be done in the future.

4.3 Using phase shift to characterize the mixed

modes in red giant stars

In this section, we continue the asymptotic analysis of mixed modes in red giants.
This includes a detailed discussion about the eigenvalue conditions for mixed modes,
and then extends the discussion to some general properties of mixed modes and use
of the phase shift in the asymptotic descriptions. The pair of eigenfunction condition
equations (4.6) is also conditions for pure g and p modes when q = 0 and hence ϵ should
be replaced by corrections according to modes. For a mixed mode, any deviations from
pure oscillatory modes, which caused by coupling, are implied by the very term ϵ and
the± and ∓ signs. We selected two models of the 1.3 M⊙ red giant model of Figure 4.3
for the discussions in this section. Along the evolutionary track, one sub-giant model
Ms is selected to present the case that p modes undergoing avoided crossings, while
one red-giant model Mr is picked up to present g-mode case. Because in the sub-giant
branch, high-order p modes are still able to be observed like being in the main-sequence
stars, but they are mixed with g modes at different level that relates to ϵ. On the other
hand, at more evolved evolution stage, the star may only have g modes, some of which
can be detected in terms of mixed modes that have significant p-mode character. We
will follow the classification of mixed modes as in Section 4.1.2 that divide them into
two categories, p-m and g-m mixed modes, according to how much they contribute to
the kinetic energy. If a mixed mode has a large contribution from the acoustic cavity
in mode energy, it behaves more like a p mode having a larger amplitude that enables
it to be detected and hence it is called p-m mixed mode.

4.3.1 Phase shift

Following the same denotes of turning points as in Figure 4.5 that the propagation of
the oscillation mode is divided into p, g and evanescent region by the turning points
‘a’, ‘b’ and ‘c’. The coupling strength q is the parameter that measures the level of
coupling. As discussed above, the value of q depends on how close the two cavities are.
In principle larger-frequency modes have larger q for the evanescent regions get smaller
as frequency increasing. But this dose not mean larger-frequency modes have greater
mixed character than lower ones. The occurrence of mixed modes is determined by the
eigenvalue conditions in equations (4.6) meaning the integrals of K of a given mode
in different oscillatory regions should satisfy the conditions. The evanescent region
is between b and c, of which the width relates to the strength of coupling between
oscillatory waves traveling in g region and p region. It is obvious that width changes
with frequency as well as the two characteristic frequencies, N and Sl. However, the
changes of q for adjacent modes are not significant, which means they have similar
coupling strength but avoided crossing only happens to certain modes. The reason for
that is q is not related to the occurrence of avoided crossing, but from equations (4.6)
ϵ is the parameter that really matters here. For the case of the sub-giant model Ms,
p modes are still observable. The frequency échelle diagram of acoustic oscillation
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Figure 4.16: Frequency échelle diagram of acoustic oscillation modes (n > 0)
in Ms. Modes of different degrees are indicated by diamonds ( l = 0), pluses
(l = 1) and triangles (l = 2). To guide the eyes the line connected the dipolar
mixed modes. G-m mixed modes for l = 2 modes are suppressed in the figure.

Figure 4.17: Computed ϵ of dipolar modes of ModelMs from equation (4.46) as a
function of frequency. Each mode is illustrated by diamond. Modes undergoing
avoided crossing is in red.
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modes of model Ms is shown in Fig. 4.16. Though there are slight shifts, the radial
modes (diamonds) are stack up vertically, because they are equally spaced by ∆ν.
The reason for the deviations is that ∆ν varies with mode orders and the potentially
lack of surface correction for high-order modes (Kjeldsen et al., 2008). Mixed modes
for l = 1 are clearly illustrated in Fig. 4.16 as their frequencies are largely off the
vertical pattern. This is due to the reason that when avoided crossing happens the
mode frequency bump to a higher value for g-m mixed mode. When the evanescent
region is narrow, the coupling is large enough to make significant variations to the
modes. The level of coupling is determined by q, but the extent of avoided crossing is
decided by the phase shift ϵ:

ϵ ≈ 1
π

∫ R

rc

Kdr − np. (4.46)

Since K only depends on mode frequency and l for a given mode, ϵ also varies with
the frequency if we only consider dipolar modes here. However, in reality, the com-
putation of ϵ needs very accurate K for a mode, which is very difficult because K
is approximated based on several assumptions. For instance, in equation (1.32) we
neglect the cut-off frequency which is generally small in the stellar interior but can be
large near the surface. Besides, the lack of corrections for near-surface layers results
in offset between computed and observed frequencies for high-order modes (Kjeldsen
et al., 2008). Since we only deal with computed frequencies in this thesis, the surface
correction is not relevant. Nevertheless, (4.46) still works excellently for determination
of mixed modes, because ϵ shift largely from regular pattern when avoided crossing
occurs.

Fig. 4.17 shows the computed ϵ of l = 1 modes for Model Ms. Only modes in high
frequency range are plotted in the figure, where the asymptotic relation works fine.
The mode that undergoing avoided crossing and having irregular ϵ value from other p
modes has frequency around 1030 µHz and its ϵ is very close to 0.5. The ϵ of regular
p modes should be very small (around 0), but a clear decreasing trend is shown in
the plot. The reason for this is the defective treatment of surface terms in asymptotic
analysis. Therefore, the computed frequencies of these higher-order modes shift from
their true values. The large jump in ϵ of mixed modes is so obvious in this sub-giant
model that the use of ϵ as an indicator of the extent of avoided crossing is valid. In
the case of more evolved stars with many g-mode mixed modes that are much denser
in frequency, ϵ can be a useful window to understand the mixed modes and stellar
interior.

As shown in Fig. 4.18, a period échelle diagram for model Mr is produced by
plotting the frequencies as a function of the period modulo the period spacing ∆Π.
The uncoupled g modes should be aligned vertically in this diagram, but they spread
sideward due to the effect of coupling, leaving the most p-mode like mixed modes
located at the sides of each s-shape pattern (red circles in the figure) and the most
g-mode like one lies at the centre (green circle). In Fig. 4.18, all these modes are
coupled between different orders of g modes and two p modes, namely np = 3 and 4.
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Figure 4.18: Period échelle diagram of a segment of gravity modes in Mr. These
g modes are coupled with the same p mode. The modes in red are the most
p-mode like mixed modes among the g modes in this plot, while the green circle
indicates one that preserve most g-mode character during the coupling.

a b

Figure 4.19: (a) Computed ϵ of dipolar modes of Model Mr from equation (4.47)
as a function of frequency. (b) ϵ computed from equation (4.46). Green and
red circles correspond to the same kinds of mixed modes as in Fig. 4.18. For
the two red p-m modes, the first one that is smaller in frequency has a p-mode
radial order of 3, while the other one has an order of 4.
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The distances of these mixed modes from the centre depend on different ϵ values that
reveal the extent of coupling during each avoided crossing. The shift term ϵ is now
given by:

ϵ ≈ 1
π

∫ rb

ra

Kdr − 1
2
− ng. (4.47)

The resulting value of ϵ of these mixed modes are illustrated in Fig. 4.19(a). Modes
in red are the ones having most p-mode like characters and located at the edges of
the pattern in Fig. 4.18. Their absolute value of ϵ (near 0.5) is much larger than ones
of less perturbed g-mode like modes (the green mode and its vicinities in Fig. 4.18),
meaning they are very close to a pure p mode and the green mode is the closest one to
a pure g mode. The utility of ϵ as a tool to indicate the extent of avoided crossing is
also explained in Fig. 4.19(b), in which the ϵ is computed from equation (4.46). Here
the ϵ of red modes are very close to 0 indicating the purity of their p-mode character.
Similarly, the green mode, the most g-mode like one, differs more than any other mixed
modes in the plot and therefore has an absolute ϵ value close to 0.5. However, the
computation of ϵ is very sensitive to the integral of K over different regions, and hence
to K itself as well as the locations of the turning points. Due to the use of various
approximations in the asymptotic analysis (Jiang & Christensen-Dalsgaard, 2014), K
can be not very accurate for many modes, raising the question about the effectiveness
of using ϵ. Although ϵ can not be used globally to measure the extent of coupling for
this reason, it is still helpful to do so locally as what we do in Fig. 4.18 and 4.19,
because we do not need to know the value of ϵ accurately but only to pursue the
relative results.

In Section 4.1.2 we introduced that the ratio between the contributions of p and g
cavity to the kinetic energy for a certain mode also helps to understand the behaviour
of mixed modes. However, the contributions are not able to be obtained from obser-
vations directly, making it only stay theoretically. The integrals of wave number K is
related to two observable parameters ∆Π and ∆ν, which makes them more valuable.
This will be discussed later.

4.3.2 Mode order of coupled modes

In equations (4.2) and (4.3), np and ng represent the radial order for uncoupled modes.
But for coupled modes, their values shift away from pure modes by the number of times
they are being coupled, which are the resulting radial orders n given in the model. We
first use the model Ms to discuss the shift in radial order caused by coupling. Fig. 4.16
shows p modes (n > 0) that experience several times of avoided crossings, though
the coupling already happens for low frequency g modes (n < 0). The normalized
mode inertia E (equation (1.3)) of g modes in Model Ms is plotted in Fig. 4.21.
The mode inertia of uncoupled g modes are large because of their large horizontal
displacements and great density in the centre. The add of p-mode character increases
the displacement vertically but suppresses it horizontally, leading a decrease in inertia.
As a result, those mixed modes having locally small inertia, which are the red ones
and their vicinities in the plot, are p-m mixed modes and are able to be detected in
observations. The detectability of these modes increases with observation time.

The red modes in Fig. 4.21 indicate that there are six times of coupling happening
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Table 4.5: Radial orders for Model Ms p modes. n is the radial order, while np

and ng are the radial orders of the pure p and g mode that contributes to the
corresponding mixed mode, from equation (4.46) and (4.47).

n np ng

1 7 6

2 7 5

3 8 5
4 8 4

5 9 4

6 9 3
7 10 3

8 11 3
9 12 3

10 12 2

11 13 2
12 14 2

13 14 1

14 15 1
15 16 1

16 17 1
17 18 1

18 19 1

19 19 N
20 20 N
21 21 N
22 22 N
23 23 N
24 24 N
25 25 N
26 26 N
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Figure 4.20: The large frequency separations computed theoretically from equa-
tion (4.48) as a function of the ones from model frequencies. The black dots are
the frequency separations, while the red line is a power law fit.

in the g-mode range, which means the six lowest-order p modes coupling with these g
modes and their frequencies are bumped up to higher values as discussed in Section 4.1.
As a result, the first six p modes are buried in the g modes. Table 4.5 lists the radial
orders n, np and ng of Ms p modes. It is not surprising that the np value of the first
p mode is 7. The first six coupling in the g-mode frequency range means that there
are six g modes bumped into p-mode frequency range, due to which it is reasonable
to find that there are 6 g modes hidden in the p-mode frequency range.

Similarly, we can also examine the change of radial orders for g modes. In Table 4.6
we list the radial orders for those most p-m mixed modes in g-mode frequency range.
Once coupling happens, n is increased by 1 from ng(actually it is decreased by 1 if the
g-mode radial orders were not defined as negative values). Therefore, the last mixed
mode in g-mode frequency range is coupled by the 7th-order g mode and the 6th-order
p mode.

In summary, the radial order of a mixed mode is decided by its gravity and pressure
radial orders ng and np, being n = ng +np. Given ng is defined as negative value, n is
also negative in the g-mode frequency range, but positive in the p-mode range. Similar
to ϵ, ng and np are only related to K, hence to the inner structure of the star and the
mode frequency, they are not possible to be obtained directly from observations.
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Figure 4.21: Normalized mode inertia (cf. equation (1.3)) of l = 1 g modes for
the model Ms. The y-axis is in logarithm. Those p-m modes are plotted in red,
indicating several times of coupling happen in the g-mode cavity.

4.3.3 Application to observed frequencies

The wave number K provides us a useful tool to explore the interior structure of the
star. Although it can only be gained from models, by employing some approxima-
tions, it is also related to some observable parameters. Christensen-Dalsgaard (2012)
discussed the approximated versions of K in p, g cavity and in the evanescent region
through a simple asymptotic analysis. After comparing them with the definitions of
∆ν and ∆Π, we find that

∫ R

rc

Kdr ≈ πν
∆νint

, (4.48)

and
∫ rb

ra

Kdr ≈ π
ν∆Πint

, (4.49)

where ∆ν int and ∆Πint are theoretical spacings. ∆ν and ∆Π are achievable parameters
from observations (Bedding et al. (2011), Jiang et al. (2011)), therefore they enable us
the possibility to calculate the integrals of K in each region for real stars. However,
the approximation make quite a difference between the theoretical spacings, ∆ν int

and ∆Πint, and the ones from observations, ∆ν and ∆Π. In order to understand
how much the difference is, we computed a large number of giant models with mass
ranging from 1.1 to 1.4 M⊙ and different chemical compositions. A small fraction of
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Table 4.6: Radial orders for Model Mr g modes.

n ng np

-25 -26 1

-14 -16 2

-9 -12 3
-5 -9 4

-3 -8 5

-1 -7 6

the large frequency separations is plotted in Fig. 4.20. ∆ν int is the theoretical value
from equation (4.48). ∆ν is obtained from the fit of radial-mode frequencies of the
models to their radial orders. A power law fit is performed to the separations for all
the models and we find the relation between ∆ν and ∆ν int is ∆νint = 1.062∆ν0.996.
The exponent is very close to 1, but for sub giant models it is slightly smaller than red
giant models. We do not include main-sequence stars in the computation. Similarly,
we also use a power law to fit the period spacings ∆Π and its theoretical values ∆Πint

from equation (4.49) and plot them in Fig. 4.22. The exponent of the fit is also very
close to one and the power law relation is ∆Πint = 0.991∆Π1.002 . From Fig. 4.20 and
4.22 we know that the relations between theoretical values and observed ones are very
stable and reliable, which provides us the opportunity to advance the analysis to real
data.

The ϵ approach has been applied to one red giant star, KIC 3744043, observed by
the Kepler space mission. This star was analysed by Mosser et al. (2012) for mixed
modes study. They found that ∆ν and ∆Π of this star is 9.90 µHz and 75.98 s. Using
the power law relation between the theoretical spacings and the observed ones, we
approximate the ∆νint and ∆Πint to be 10.42 µHz and 75.95 s. A part of the power
spectrum of the KIC 3744043 is plotted in the top panel of Fig. 4.23, covering 2∆ν
wide, with νmax of 110.9 µHz locates in the centre. Apart from two radial modes
and two l = 2 p modes, two bunches of l = 1 mixed modes are clearly illustrated.
This star is still burning hydrogen around the core but is on the ascending red giant
branch (Mosser et al., 2012). Therefore, pure dipolar p mode does not exist and all
the observed dipolar modes are p-m mixed modes. We calculate the ϵ for these mixed
modes using equations (4.47), (4.48) and (4.49) to indicate how large they deviate from
pure g modes and plot them in the bottom panel of Fig. 4.23. As discussed above,
these p-m mixed modes possess the p-mode character through coupling. The extent
of the coupling is reflected by ϵ. In this case, the most p-mode like mixed modes have
largest absolute values of ϵ in their local mode clusters and they locate the farthest
away from the dashed line indicating the position of 0. Normally the p modes have
much larger amplitude than g modes, which makes them much easier to be observed
than the later kinds. This is true as shown in the power spectrum of KIC 3744043.
In the first dipolar mode cluster, where modes have frequencies around 106 µHz, the
third mode has largest ϵ value and therefore it is the most p-mode like mode in this
cluster. The amplitude of this mode is much higher than the rest of the modes located
beside which all have comparable low amplitude. It is not possible to distinguish their
mixed-mode characters from the power spectrum, but it is possible from the ϵ values.
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Figure 4.22: The period spacings computed theoretically from equation (4.49)
as a function of the ones from model frequencies. The black dots are the period
spacings, while the red line is a power law fit.

The second clusters of dipolar modes also prove the validity of using ϵ.

We can also identify the radial order of these dipolar modes directly from equa-
tions (4.46) and (4.47). The two most p-mode like mixed modes have pressure radial
orders of 10 and 11, respectively, while Mosser et al. (2012) derive them to be 9 and
10 by using the asymptotic relations. The radial orders are from −125 to −110, de-
creasing by 1 for adjacent mode except for the two most p-mode like mixed modes.
Their n stay unchanged as the previous mode.
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Figure 4.23: Top: Power spectrum of the KIC 3744043, with superimposed
mode identification provided by Mosser et al. (2012). Red arrows indicate the
forests of dipolar mixed modes, while green and blue arrows show the positions
of radial tripolar modes, respectively. The power spectrum only covers two ∆ν
range, with νmax of 110.9 µHz locates in the middle. Bottom: ϵ computed using
equation (4.47) for the dipolar mixed modes, as a function of the frequency.
Modes with ϵ close to 0 preserve more g-mode character. On the other hand,
modes with ϵ away from 0 are more affected by p-mode character. The most
p-mode like modes in each cluster are filled with red.
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Chapter 5

Conclusions and Future
Prospects

In this thesis, we presented several work on aspects of asteroseismology in red giant
stars, practically and theoretically. From the observational point of view, we utilized
high-precision photometrical data from the Kepler space mission launched by NASA
and many supplementary data from various high resolution spectrographs, including
the promising SONG network led by the Stellar Astrophysics Center (SAC) at Aarhus
University. The center is funded by the Danish National Research Foundation. The
purpose of the SAC is to study the stars and their planetary systems based on a
comprehensive strategy that seeks to produce a complete picture of the structure, at-
mosphere and magnetic activity of the stars and the planets in their orbit. Theoretical
modelling in terms of evolutionary and pulsation calculations were performed with the
ASTEC code for stellar evolution and ADIPLS code for oscillation modes.

5.1 Summary and Conclusions

The high-precision and high-quality photometric time series from Kepler are able to
provide us high resolution frequency dataset of power spectra, with which lots of
details of solar-like oscillations in red giant power spectra are revealed for the first
time. Despite the inevitably high system noise in low frequency range, normally the
power excess range can cover about 6∆ν wide in the Kepler power spectra with good
quality. The peaks of pure p modes are significant enough to be detected. Thanks to
the long-term continuous observation of the Kepler spacecraft, substantial l = 1 mixed
modes are also detectable, which gives us a window to study the interior of these stars.

In Chapter 2, we used the Kepler red giant star KIC 11618103 as an example
to introduce the basic properties of Kepler time series and the way to analyze them,
including the approaches to remove outliers and systematic trends, and to normal-

97
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ize time series of different quarters. After performing the Fourier transform to the
reduced time series, the resulting power spectra are ready for further extractions of
seismic parameters, such as ∆ν and νmax. However, before this step the background of
the power spectrum, which is due to various stellar activities and can contaminate the
spectrum with peaks not from oscillations, should be removed first. The background
can be modeled by a sum of several Lorentzian-like functions, subtracting which from
the spectrum leaves the spectrum with only oscillation peaks significant. During the
process of modelling the background, the value of νmax is acquired from the Gaussian
term used to fitting the power excess region. We introduced three different approaches
to obtain ∆ν from the power spectrum. The first two are the so-called power spectrum
of the power spectrum method and auto-correlation method, which are both efficient
and stable ways to get ∆ν directly from the oscillation peaks. The third method is
to perform a linear fit to the frequencies of radial modes, which of course needs to
know the individual mode frequencies first. The extraction of mode frequencies is
done by using the program of Period04 which can find the oscillation peaks iteratively.
However, the program is not suitable for large sample of targets which require more
powerful and complicated peakbagging procedures. We extracted 33 frequencies from
the power spectrum of KIC 11618103, including two l = 3 modes and a bunch of l = 1
mixed modes. Using these time series and power spectra analyzing techniques, we
demonstrated the result of the red giant stars of the three open clusters in the Ke-

plerfield, NGC 6791, NGC 6819 and NGC 1811. Stars in a certain cluster are assumed
to share the same age, distance and metallicity, which is an excellent advantage that
allows for stringent verification of stellar evolution theory. We studied 89 stars be-
longing to the three clusters, (52 in NGC 6791, 32 in NGC 6819 and 5 in NGC 6811).
All of the targets are ascending giant branch stars except for the 5 stars in NGC 6811
which are identified as red clump stars. The ∆ν and νmax for all the targets are ob-
tained from the power spectra, which are utilized in the scaling relations to estimate
the stellar masses. Due to the fact that cluster members on similar evolutionary stage
have similar masses, the masses that are estimated from the scaling relations should
in agreement with other members in the same cluster. For the required term Teff in
the scaling relations, they are derived from two different colors (B − V ) and (V −K)
independently. After the comparison between the resulted temperatures from the col-
ors, we confirmed that (V −K) color index is generally the better temperature proxy
for cool red giants. Besides, we listed the global parameters as well as some seismic
parameters in the chapter, which are essentially valuable for asteroseismic modelling
studies.

As a very important aspect of asteroseismology, asteroseismic modelling interprets
stars from the theory point of view. High-quality photometry and spectroscopy pro-
vide good measurements of stellar parameters and oscillations. With some appropriate
approximations of the complex stellar physics in the numerical calculations, models
are proved to be able to reflect real stars very well with global parameters and oscil-
lation frequencies. However, due to near-surface effect, there is a long-last systematic
deviation between the computed and observed frequencies, which can be corrected
empirically by a power law fitting. In Chapter 3, we presented the surface corrected
theoretical frequencies for a model calibrated to the Sun and they match perfectly with
observed frequencies in the échelle diagram. Models help interpret real stars, while
observations of real stars provide constraints on models. The selection of best-fitting
model from tens of thousands of models in the grid should make use of the observation
constraints through a calculation of χ2 minimization. Taking the global parameters,
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such as mass, radius, [Fe/H], Teff and so on, and individual frequencies into account
in the χ2 minimizations is a powerful approach to find the best-fitting model that has
smallest χ2 value. We introduced two of our modelling work on real stars. One is a
Kepler red giant star KOI-1299 which is a host star of a planetary system. And the
other one is the first red giant star, 46 LMi, observed by the SONG network. For
KOI-1299, time series from the long-term Kepler observations give us the opportunity
to extract many dipolar mixed modes in addition to expected pure p modes with very
good precision. These individual oscillation frequencies used in χ2 calculations make
the selection of best-fitting model more precise and resulted parameters with smaller
errors than normal grid-based modelling which do not use frequencies but only global
parameters. For the first SONG red giant star 46 LMi, we only have less than two
month data with daily gaps, because only one node of the network is observing. We
could only identify three modes from the power spectrum, which are not enough for
detailed modelling. Therefore we could only model this star with the global parame-
ters, which leads to a less precise determination of masses. As more data coming from
observation and more nodes of the network established in the future, detailed mod-
elling which utilize the mode frequencies can be on the table again and can definitely
help to improve the modelling results.

Mixed modes result from the coupling between the acoustic and gravity modes in
evolved stars when the buoyancy frequency N is high enough that frequencies of g
modes are able to approach those of p modes. The amplitudes of pure g modes are
usually so small that they are not able to be detected. But in more evolved stars g
modes can be observed in terms of mixed mode. The detection of mixed modes in
Kepler data is a new window on stellar evolution and interior studies. In Chapter 4,
we study the properties of mixed modes by using models at different stages along a
1.30 M⊙ evolutionary track. When a star evolves past the main sequence, the possible
frequency upper limit that a g mode can get to increases dramatically because of the
increase of the central density. In the beginning, oscillation modes are dominated by
p modes and coupled with several g modes, and high-order pure g modes are only
distributed over the low frequency region. Frequencies of p modes are bumped up to a
slightly higher value when an avoided crossing happens. As the star ages, frequencies
of more g modes grow to be as high as those of p modes. The dense g modes are
then coupled with a few acoustic oscillation modes. The frequencies of g modes are
diminished a little as a result of coupling in this case. The extent of the coupling can
be measured by a coefficient called the coupling strength q that corresponds to how
close the g and p cavities are. The closer the two cavities are, the larger is q.

The coupling actually affects every oscillation mode all the time in more evolved
stars, at a level which also depends on the mode phases. We followed the work of
Mosser et al. (2012) to show an asymptotic relation of mixed modes derived from
an implicit relation between the phases of coupled p and g modes. By using this
asymptotic relation, we can measure the coupling strength and ∆Π to a very good
degree for ascending-branch models by means of grid searching. In other words, the
asymptotic relation is very helpful for the identification of mixed modes in observed
power spectra. However, our fitting method failed to provide reasonable q for early
models where p modes still play the leading role. We managed to classify the mixed
modes according to the proportions of the contributions to their mode inertia from
the outer region to the central core.
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We find that for RG models when a mixed mode has considerable variation in
frequency, the proportions of the contributions to its mode inertia from the outer
region to the central core change significantly as well. Frequencies of those p-m modes
with a large contribution ratio of mode inertia between the two regions (ζ ≫ 1) are very
close to the pure p modes, which are obvious in the power spectrum. In their vicinities,
several mixed modes with relatively smaller ζ (ζ ! 1) can be detected from observation,
which have more g-cavity character and hence reveal more information of the central
core. Christensen-Dalsgaard (2012) estimated that the chance of finding such mixed
modes is related to the width of the maximum reduction in period spacings, which is
based on a study of the solutions of an asymptotic dispersion relation. Although we
have a slightly different dispersion relation in this thesis, an identical expression for the
period spacing is obtained and has been employed to fit theoretical models, which gives
excellent results for ∆Π and ∆ν. We confirm the prediction of Christensen-Dalsgaard
(2012) about the chance of finding mixed modes, but we also notice that the width
and depth of the dips in period spacing depend on the combination of mode frequency
and q. Our fitting to period spacing is able to supply uncertainties and also results
in a good outcome of q for more evolved stars, but unreasonably high value of q for
high-order g modes. The two fitting approaches can both provide robust outcomes for
evolved stars when they are combined. We note that, although our analysis is done
for theoretical models, the method is also useful for real observations that provide
adequate mixed modes.

The value of q inferred from the analysis of observed frequencies in principle pro-
vides diagnostics of the stellar interior, supplementing ∆ν and ∆Π which probe, re-
spectively, the envelope and the core of the star. This requires a better understanding
of how q is related to the structure of the star in the evanescent region. The theoretical
qint from the integral expression of equation (4.5) is obviously inadequate for this pur-
pose, given the problems with the underlying asymptotic equation in the evanescent
region. A more careful analysis is required, taking into account the potential singu-
larities. A second limitation in the analysis is the use of the Cowling approximation,
neglecting the perturbation to the gravitational potential. We have tested the impor-
tance of this by determining the coupling strength computed by fitting frequencies
computed in the Cowling approximation, comparing with results based on the full set
of equations, and showing a significant reduction in q, by about 0.02. We note that
the Cowling approximation could be avoided in the present case of dipolar modes by
using the exact second-order equation developed by Takata (2005). This definitely
deserves further investigation.

Furthermore, although the coupling strength varies with the mode frequencies, the
differences between them are normally quite small for a star. However, it is obvious
that the extent of coupling for some modes differs a lot from their vicinities, for
their frequencies changes largely from the regular p or g mode pattern. These modes
theoretically satisfy the eigenfunction conditions of equations (4.2) and (4.3). In this
thesis, we discussed the method of utilizing ϵ, from the eigenfunction conditions, as
a tool to distinguish the extent of coupling for adjacent mixed modes. We computed
ϵ values for the mixed modes in a sub-giant as well as a red-giant model. For both
cases, ϵ is around 0 when the mode suitably satisfies the eigenfunction conditions
for pure p and g modes. When the mode meets the condition for mixed modes, the
absolute value of ϵ shifts away from zero, meaning the mode gains p-mode character
if it was a g mode before or vice versa. Therefore, the absolute value can be used
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to determine the extent of coupling for adjacent modes. We apply this method to
a red giant star observed by Kepler. From the power spectrum of this star, it is
not possible to directly distinguish the character of dipolar mixed modes in the same
frequency cluster. With the help of ϵ, we can accomplish that by measuring how far
away their ϵ values are from zero, once we obtained the ∆ν and ∆Π from the power
spectrum. Given the fact that the calculation of ϵ is very sensitive to K which is
obtained through series of approximation, this method is not suitable for low-order
modes where the approximations of K is not valid. However, it works well for observed
frequencies for which only modes around the νmax can be observed and their radial
orders are normally high enough.

Another purpose of computing ϵ is to identify the radial order of pure p and g mode
that are mixed into a mixed modes. The mixed-mode radial order which indicates the
number of radial nodes in the wave function is defined by |ng|+ np, where ng and np

are the pressure and gravity radial orders. In order to have an accurate and continuous
numbering of mixed modes, which is given in theoretically computed modes, we use
the definition n = ng + np. ng and np can be easily obtained from equations (4.46)
and (4.47), which is an alternative way of obtaining the radial orders other than the
asymptotic fitting. Knowing the pressure and gravity radial orders gives us better
understanding of the contributions of mixed modes from the p and g mode character.

5.2 Future prospects

In this thesis, we introduced the asteroseismology in red giant stars from both mod-
elling and observation point of view, which are of great importance among all the
aspects of asteroseismology. However, our understanding of the evolution and the in-
terior, and the physics within, of red giant stars are still inadequate. With the help of
asteroseismology, we can improve our understandings about these red giants for sure.
In Chapter 2, we analyzed the time series of the open clusters NGC 6791, NGC 6819
and NGC 6811 and obtained global parameters as well as seismic parameters for all
our targets. These parameters are excellent constraints for detailed modelling which
can precisely determine the masses, radii, age and other parameters of the cluster
members. Since stars in a cluster share the same distance, age and metallicity, these
parameters determined from models are also expected to be close to each other, though
the determination of cluster age can be model dependent and have high errors. The
large samples of cluster members are useful to learn the evolution and interior of red
giants. Therefore, the detailed modelling of these open clusters is of great interest.

SONG network is believed a very promising project. With the very high quality
SONG spectrograph we can measure the velocity to a precision of 1-2 m/s which
corresponds to a shift of 100 atoms in the position of the spectral lines on the digital
camera in the spectrograph. The data we presented in Chapter 3 were observed by
the first SONG node, the Danish SONG telescope in Tenerife, the Hertzsprung SONG
telescope. The second node which is located at the Delingha Observatory in the
Qinghai province of China and has an excellent infrastructure. The building, telescope
and spectrograph are completed and currently alignment and initial commissioning is
ongoing. More nodes in different countries all over the world are going to be built in
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the very near future. We can imagine what great data this global observation network
can provide for asteroseismology studies.

Mixed modes carry information of the stellar outer part where the p cavity is and,
more importantly, also that of the inner part where the g modes travel. They en-
able us to study the interior from observations. However, our understanding of the
coupling strength of mixed modes only stay theoretical. The relation between the
strength and stellar parameters, such as mass, metallicity and so on, are unclear. In
this thesis, we studied mixed modes and the coupling strength and phases theoretically
and asymptotically. The asymptotic analysis utilizes some approximations which may
lead to improper treatments in same cases. For example, the Cowling approximation
used to get rid of the perturbation of the gravitational potential in the general hy-
drodynamic equations, simplifying the equations into second-order system. But the
Cowling approximations are not valid for low radial order modes which are significant
in the power spectra of more evolved stars. Additionally, the asymptotic expressions
of Airy functions used in the derivations of eigenfunctions are also problematic. As
discussed in Chapter 4, the asymptotic expressions are not valid around and at the
turning points, which can result in significant deviations, for example the theoretical
qint in our analysis is apparent underestimated because of the deviations of K from
the asymptotic analysis. Therefore, a more developed asymptotic analysis is needed
with the intention to understand mixed modes better.
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