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ing and magnetometry [II, III, IV].
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Abstract

Dansk resumé. I denne teoretiske afhandling beskrives det, hvordan man kan lave
ekstremt præcise målinger af små magnetfelter. Til at lave målingerne bruger vi en
gas af atomer. Atomerne kan ses som små magneter, og når disse små magneter pla-
ceres i et magnetfelt, vil de dreje ind efter feltet. Ved at måle på laserlys der har været
sendt igennem atomerne kan vi bestemme, hvor meget atomerne har drejet og dermed
hvor stort et magnetfelt de befinder sig i. I afhandlingen gennemgår vi bl.a. resultater
for tidsafhængige magnetfelter, hvor vi viser, at det øjeblikkelige måleresultat ikke kun
indeholder information om det nuværende magnetfelt, men også om magnetfeltet til
tidligere tider. Det betyder, at en måling foretaget til et bestemt tidspunkt kan bruges
til at forbedre resultatet af målinger foretaget tidligere.

English abstract. This theoretical thesis describes how to make extremely
precise measurements of small magnetic fields. To make the measurements
we use a gas of atoms. The atoms can be thought of as small magnets and
when they are placed in a magnetic field they will turn—how much depends
on the size of the field. By sending a laser beam though the atoms we are
able to measure how much they have turned and this gives us the size of the
magnetic field. In this thesis we investigate, e.g., time-dependent magnetic
fields and we show that if we make a measurement on the magnetic field, we
get not only information about the present size of the field but also about the
size of the field at earlier times. This information can be used to improve the
results of the measurements back in time.
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One

Introduction to the Thesis

Squeezed light is a quantum phenomenon which, e.g., can be used to
improve precision measurements like magnetometry. In this very brief
chapter an outline of the thesis will be given.
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1. Introduction to the Thesis

1.1 Introduction

Quantum variables must fulfill Heisenberg’s uncertainty principle, which
means that two non-commuting variables cannot both be determined with
arbitrary good precision. It is however possible to determine one of the vari-
ables with arbitrary good precision if the other variable is correspondingly
badly determined and in this case we have a squeezed state. Here we will
investigate quantum mechanical squeezing of optical fields generated in an
optical parametric oscillator (opo). In the standard theory for describing
squeezing (see, e.g., Ref. [1]) it is difficult to, e.g., include measurements on
the output field from the cavity. As we will show, certain kinds of measure-
ments made on the output field can be included when we use a Gaussian
description. Squeezed light represents a means to improve precision mea-
surements below the standard quantum noise limit for optical detection. An
example is frequency-modulated (fm) saturation spectroscopy with squeezed
light [2, 3]. Another example, which we will investigate in this thesis, is pre-
cision measurements of magnetic fields (magnetometry).

Precision atomic magnetometry relies on the measurement of the Lar-
mor precession of a spin-polarized atomic sample in a magnetic field [4–7].
From standard counting statistics arguments, one might expect the uncer-
tainty in such measurements to decrease with the interaction time t and with
the number of atoms Nat as 1/

√
Natt. It is however possible to surpass the

above limit if the monitoring of the atomic sample, necessary for the read-out
of the estimate of the magnetic field, squeezes the atomic spin. In a recent
theoretical analysis a scalar B-field was estimated by a polarization rotation
measurement of an off-resonant light beam passing through a trapped cloud
of spin-1/2 atoms [8]. This interaction squeezes the spin of the atomic sam-
ple, and by quantum trajectory theory [9] combined with the classical theory
of Kalman filters [10–12], the uncertainty in the field strength was found to
decrease as 1/(Natt3/2) [10]. Very recently this proposal was implemented
experimentally, and indeed sub-shotnoise sensitivity was found [13].

For decades superconducting quantum interference devices, squids, have
been unrivaled as the most sensitive detectors of weak magnetic fields, and
they have been applied in diverse scientific studies including nmr signal
detection [14], visualization of human brain activity [15], and gravitational
wave detection [16]. Optically pumped atomic gases offer an alternative
means to detect weak magnetic fields via the induced Larmor precession
of the polarized spin component of the atoms, and the possibility to avoid
the need for cryogenic cooling and the relatively high price of the squid de-
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Introduction

vices, has spurred an interest in employing atomic magnetometers in medical
diagnostics, see for example work on the mapping of human cardiomagnetic
fields [17, 18]. Combined with the fact, that the atomic based magnetometers
may now reach superior field sensitivity [4], we are now highly motivated to
investigate and identify the optimal performance and fundamental limits of
such devices.

Atoms constitute ideal probes for a number of physical phenomena, and
since they are quantum systems, the statistical analysis of measurement re-
sults has to take into account the very special role of measurements in quan-
tum theory. In high precision metrology the aim is to reduce error bars as
much as possible, and there is an obvious interest in making the tightest
possible conclusion from the measured data. How to optimally prepare and
interact with a physical system to obtain maximum information, and even the
simpler task of identifying precisely the information available from a specific
(noisy) detection record, are not fully characterized at this moment. Large
efforts are currently being made to combine techniques from classical control
and parameter estimation theory with quantum filtering equations.

The precision measurements exercise a significant back-action on the pro-
bed system, and to assess the achievement of a detection scheme we need a
formalism that can deal with light-matter interaction and measurement in-
duced state reduction continuously in time. Now, a continuous wave beam
of light is described by infinitely many modes, for example in time or fre-
quency domain, and the quantum state of the light field and of the system
interacting with the beam is in general too complicated to be fully accounted
for in a Schrödinger picture representation. In many quantum optical prob-
lems with constant or periodic driving Hamiltonians, it has been possible,
however, to provide solutions in the Heisenberg picture for the relationship
between Fourier transformed frequency components of the field and system
observables. Unfortunately this well-established technique does not apply in
conjunction with measurements on the joint system acting locally in time and
hence affecting all frequency components of the observables at each measure-
ment event. This thesis does not provide a solution to this general problem.
Instead, we shall demonstrate that for a specific dynamics restricted to a spe-
cific class of states, the so-called Gaussian states, a significant reduction in
the number of parameters needed to fully characterize the system enables a
complete description.

We describe the systems using Gaussian variables which have been stud-
ied widely in relation to entanglement [19]. A Gaussian state y is fully
characterized by its mean value vector m and its covariance matrix γ where

3



1. Introduction to the Thesis

γij = 2Re〈(yi − 〈yi〉)(yj − 〈yj〉)〉1. As long as the Hamiltonian and the mea-
surements all preserve the Gaussian state we do not need the density matrix,
it is sufficient to look at the mean value vector and the covariance matrix. We
can use the Gaussian approximation as long as the Hamiltonians are at most
second order polynomials in the position and momentum operators. Physical
operations which are implemented using linear optical elements and homo-
dyne measurements all preserve a Gaussian state [20].

The interaction with an atomic system may destroy the Gaussian cha-
racter, but we shall restrict our attention to optical interactions with a large
collection of optically pumped atoms. Then the atoms can be described by an
effective collective atomic observable, which may in turn be well described by
a Gaussian quantum state. The Gaussian state formalism [20–22] was recently
employed [8, 23, 24] for the off-resonant Faraday rotation-like interaction [25,
26] between a continuous beam of light and an atomic ensemble. To describe
the interaction with a continuous wave of light, we will treat the beam as a
sequence of short segments of light incident on the atoms. In the interaction,
each light segment acquires some entanglement with the atomic sample and
causes a modification of the atomic state when the light segment is probed
after the interaction. The description of the incident optical beam is simple
if the state of the field factorizes in components corresponding to each short
segment of the beam. This is indeed the case for a coherent state of light,
representing a normal laser beam.

The advantages obtained by introducing this description from the outset
of the theoretical treatment are at least four-fold:

• The Gaussian description explicitly accounts for the dynamics of the
system and its behavior under measurements through update formulas
for the expectation values and the covariance matrix which together
fully characterize the Gaussian state.

• The numerical treatment of the update formulas involves only the ma-
nipulation of low-dimensional matrices.

• In the limit of small time-steps the update formula for the covariance
matrix translates into a matrix Ricatti differential equation which often
lends itself to an analytical solution.

• Effects of noise introduced by, e.g., photon absorption and atomic decay
are readily included.

1Compare with the classical Gauss distribution F(x) = 1√
2π|γ|

e−
1
2 (x−m)γ−1(x−m)T

.
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Thesis Outline

In the following chapters we will investigate generation of squeezed light in
an opo and estimation of magnetic fields, and the advantages of the Gaussian
theory will then be appreciated.

1.2 Thesis Outline

Chapter 2. In this chapter we explain how to generate squeezed light in an
(opo). Moreover we introduce the concepts of squeezing, entanglement, and
homodyne detection.

Chapter 3. Here, we describe the Gaussian theory and gives a recipe for
how to use the theory on a given problem. We use the theory to describe the
squeezing of the light both inside the cavity and of the output field. We also
describe the squeezing of the output field when we make a homodyne detec-
tion of the output field. Moreover, we show that the light is only squeezed if
we look for long enough time and we model a detector with finite bandwidth.

Chapter 4. Here, we explain how the magnetometer works: The B-field
causes a rotation of an atomic spin, and the atomic spin causes a polarization
rotation of a probe beam. We also show how to include noise in the Gaussian
theory.

Chapter 5. In this chapter we will use the squeezed light that we gene-
rated in chapter 2 and 3 to improve our magnetometer from chapter 4.

Chapter 6. Here, we extend our previous analysis to explore the possibil-
ities for estimating B-fields with not only one, but also two or three spatial
components. In cases with more than one component, it is advantageous to
use two or more polarized atomic samples. With such setups, we may iden-
tify sets of commuting observables which allow a simultaneous estimate of
the B-field components. We also discuss how to gain precision and efficiency
by entangling the atomic gases.

Chapter 7. So far we have only considered constant magnetic fields, but
here we will extend our theory to include time-varying B-fields. We describe
the B-field by an Ornstein-Uhlenbeck process and show by simulations that
the estimator for the B-field systematically lags behind the actual value for
the field, and we suggest a more complete theory, where measurement results
at any time are used to update and improve both the estimator of the current
value and the estimate of past values of the B-field.

Chapter 8. The results of the previous chapters are briefly summarized
and discussed and possible future work is considered.

5





Two

Generation of Squeezing in a Cavity

Squeezed light can be generated in an optical parametric oscillator. A
cavity is pumped by a classical pump laser, and a non-linear medium
inside the cavity converts the pump photons into pairs of squeezed pho-
tons. In this chapter we will describe the conventional method to treat
this problem. We will also introduce the concepts of squeezing, entan-
glement, and homodyne detection.

7



2. Generation of Squeezing in a Cavity

2.1 Introduction

In the following chapter we want to characterize the squeezing of light gene-
rated in an optical parametric oscillator (opo), but first we will in this chapter
describe how to generate the squeezed light. We use an opo which is an
optical cavity with a nonlinear medium placed inside. This is a well-known
technique [27, 28] and in the standard treatment the squeezing is described
by a Fourier transform into frequency space. This is fine in simple cases,
but it is difficult to include, e.g., measurements on the output field into this
theory, as a measurement occurs locally in time and therefore influences all
the frequency components. In the next chapter we will use Gaussian theory
such that we are able to include measurements etc.

In this chapter we will briefly introduce the concepts of squeezing and
entanglement which are quantum mechanical properties that we will use
throughout the thesis. This is done in Sec. 2.2 and 2.3. In Sec. 2.4, we explain
how it is possible to generate squeezed light in an opo by using the standard
treatment involving Fourier transforms. In subsequent chapters we will per-
form measurements on light beams. Here we will use homodyne detection
and we describe this method in Sec. 2.5.

2.2 Squeezing

Two quantum variables x and p must obey Heisenberg’s uncertainty relation
∆x∆p ≥ 1

2 |[x, p]|. In our case the commutator is [x, p] = ih̄ such that we get

∆x∆p ≥ h̄
2 . (2.1)

If there is equality ∆x∆p = h̄/2 we have a minimum uncertainty state. For a
coherent state ∆x = ∆p =

√
h̄/2, but it is possible to make, e.g., the uncer-

tainty of x smaller than this but at the expense that then the uncertainty of p
becomes larger. In this case we call x squeezed and p antisqueezed [29].

2.3 Entanglement

Entanglement is a unique quantum mechanical resource. A quantum state
given by a wave function |Ψ〉 ∈ HA ⊗HB is entangled if it cannot be written
on this form

|Ψ〉 = |ΨA〉 ⊗ |ΨB〉. (2.2)

8



Standard Treatment of Squeezing in an Optical Parametric Oscillator

The standard example of a two particle entangled state is the singlet state

|ψ〉 = 1√
2
(|01〉 − |10〉), (2.3)

which, e.g., was used in the discussion of Einstein, Podolsky, and Rosen’s
criticism of the fundament of quantum mechanics [30]. That the state in
Eq. (2.3) is entangled comes to expression in that even if the physical distance
between the two particles is large, a measurement of an arbitrarily chosen
property leads to the fact that it is possible to predict with certainty the result
of a corresponding measurement on the other particle.

2.4 Standard Treatment of Squeezing in an Optical
Parametric Oscillator

In this section, we present a simple model of squeezed light generation in
a cavity as shown on Fig. 2.1. The cavity is pumped by a classical pump
beam at frequency 2ωc, twice the frequency of a cavity resonance frequency.
Inside the cavity a nonlinear medium converts the pump photons into pairs
of photons with frequency ωc. This gives rise to creation and annihilation of
pairs of photons described by the Hamiltonian [1]

Hint = ih̄g(a†2

c − a2
c), (2.4)

where g is the coupling constant, and a†
c and ac are the creation and an-

nihilation operators for the light inside the cavity. Their commutator are
[ac, a†

c ] = 1.
We introduce the canonical conjugate variables

xc = 1√
2
(ac + a†

c ), (2.5a)

pc = 1
i
√

2
(ac − a†

c ), (2.5b)

which have commutator [xc, pc] = i and use them to rewrite the Hamiltonian
in Eq. (2.4)

Hint = h̄g(xc pc + pcxc). (2.6)

We express the Hamiltonian in a frame rotating with the cavity frequency ωc,
and consider the dynamics in this rotating frame. In the absence of losses,

9



2. Generation of Squeezing in a Cavity

m m

m

2ωc

Figure 2.1: Generation of squeezed light by an optical parametric pro-
cess pumped by a classical field at 2ωc. We use a cavity with three mir-
rors (m) such that the light only propagates one way. The light inside
the cavity (xc, pp) is shown in red, the input vacuum field (xph,in, pph,in)
is shown in blue, and the output field (xph,out, pph,out) is shown in
green.

the Heisenberg equations of motion (Ȧ = 1
ih̄ [A,H])

ẋc(t) = 2gxc(t), (2.7a)
ṗc(t) = −2gpc(t). (2.7b)

can be solved straightforwardly, leading to an exponential squeezing of the
pc-variable and an accompanying antisqueezing of the xc-variable, which
maintains a constant value of the uncertainty product.

This model produces a squeezed state of a single light mode inside the
cavity, and such states are subject to detailed analysis in most textbooks on
quantum optics, e.g., [1]. Here, however, we aim at applications of squeezed
light and hence we are interested in the squeezing properties of the light that
leaks out of the cavity. This light propagates out of the cavity into a continu-
ous beam, which corresponds to a continuum of modes in frequency space.
We thus replace one of the perfectly reflecting cavity mirrors with a mirror
with a small transmittance, which will lead to a loss of the cavity field with
a rate Γ. The resulting intracavity field state can be found in many differ-
ent ways, but for our purpose it is sufficient to note that the cavity mirror
acts as a beamsplitter for the intracavity field (xc, pc) and for the vacuum
field (xph,in, pph,in) incident on the cavity, see Fig. 2.1. At the partly trans-
mitting mirror the incident vacuum field is reflected into the output field

10



Standard Treatment of Squeezing in an Optical Parametric Oscillator

(xph,out, pph,out), so the output field is a linear combination of the reflected in-
cident field and the transmitted intracavity field. Imagine an incident beam
segment of duration τ, short enough that the intensity transmitted at the mir-
ror and the field amplitude built up by the Hamiltonian (2.6) can be treated
to lowest order in τ. We can then iterate the Heisenberg equations of motion
for the intracavity field and the output field from the cavity and we obtain

xc(t + τ) = (ξ + 2gτ)xc(t) +
√

Γτxph,in(t), (2.8a)

pc(t + τ) = (ξ − 2gτ)pc(t) +
√

Γτpph,in(t), (2.8b)

xph,out(t + τ) = −
√

Γτxc(t) + ξxph,in(t), (2.8c)

pph,out(t + τ) = −
√

Γτpc(t) + ξ pph,in(t), (2.8d)

where ξ2 = 1 − Γτ denotes the probability for the segment to be reflected
by the mirror. This quantity is very close to unity, and consequently ξ ≈
1− Γτ/2. The expressions (2.8) are of course equivalent to the ones obtained
by the conventional input-output formalism [27, 31], with the last terms in
Eqs. (2.8a) and (2.8b) having the characteristic properties of Wiener noise
increments in the limit of small τ. Since we assume that the input field is in
the vacuum state, Eqs (2.8a) and (2.8b) can be solved directly for the variances
of the intracavity field quadratures, starting from the vacuum state at t = 0,
and taking the limit τ → 0

Var(xc) =
1
2

Γ− 4ge−(Γ−4g)t

Γ− 4g
, (2.9a)

Var(pc) =
1
2

Γ + 4ge−(Γ+4g)t

Γ + 4g
. (2.9b)

If 4g < Γ, we see that these equations approach steady state for large times t.
Since we are interested in operating the opo in a regime where steady state
can be obtained, we assume from now on that 4g < Γ. The light inside the
cavity is still squeezed as expected since Var(pc) < 1/2, but it is entangled
with the emitted light, and hence it is not in a pure state and also not in a
minimum uncertainty state.

In the conventional input-output description we Fourier transform the
equations (2.8) into frequency space, and they then become algebraic equa-
tions. The output field operators in frequency space are expressed as linear
combinations of the input field operators at the same frequencies but with

11



2. Generation of Squeezing in a Cavity

frequency dependent coefficients [32]. All moments of the field annihilation
and creation operators have trivial expectation values in the vacuum state. If
ω denotes the difference between the optical frequency and the cavity reso-
nance frequency ωc, we have, for example, the following expression for the
normal ordered expectation value1 of the output field when the system has
reached steady state (remembering 4g < Γ)

〈: x(ω), x(ω′) :〉 =
2Γg

( Γ
2 − 2g)2 + ω2

δ(ω + ω′). (2.10)

The Lorentzian frequency dependence implies a temporal correlation be-
tween the light emitted at different times, which is due to the common origin
in the intracavity field. The field at a single instance of time is obtained by
a Fourier transformation of the expressions in frequency space. This will in-
volve all frequencies, also the ones far from the cavity resonance and hence
outside the bandwidth of squeezing. Consequently, one will not observe
squeezing properties if one observes a light field in a time interval shorter
than ∼ 1/Γ. Integrating the signal over a finite time interval T, correspond-
ing to detection of the variable

xT =
1√
T

∫ t+T

t
x(t′)dt′, (2.11)

yields a quantity with normal ordered expectation value

〈: x2
T :〉 =

1
2T

∫ T

0

∫ T

0
: x(t)x(t′) : dtdt′

=
1

4πT

∫ T

0

∫ T

0

∫ ∞

−∞

∫ ∞

−∞
: x(ω)x(ω′) : e−iωte−iω′t′dωdω′dtdt′

=
8gΓ

T(Γ− 4g)3 [(Γ− 4g)− 2 + 2e(−Γ/2+2g)T ].

(2.12)

If we use that 〈x2
T〉 = 〈: x2

T :〉+ 1/2 we see that for short times
(
(Γ− 4g)T �

1
)
, the output field has the standard noise of vacuum, whereas integration

over a long time interval yields

Var(xT) → 1
2

(Γ + 4g)2

(Γ− 4g)2 . (2.13)

1In a normal ordered expectation value all creation operators stand to the left and all anni-
hilation operators to the right. The normal ordered expectation value is denoted by 〈: · · · :〉.
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Homodyne Detection

The corresponding variance for the pT component is obtained by replacing g
by −g in the above expressions, i.e., in the long-time limit the emitted field is
described by a minimum uncertainty state, Var(xT)×Var(pT) = 1/4.

The prediction of the noise properties of xT and pT should of course be in
agreement with the ones observed if one carries out a homodyne measure-
ment to detect these quantities, but it is important to remember that during
such detection, the dynamics of the system will be different, and it is not
clear how to modify the relations in frequency space between the intracavity
field and the output field as the detection takes place in real time. However,
in the next chapter, we will introduce the Gaussian state formalism which in
fact allows an effective real-time treatment of the production and probing of
squeezed light.

2.5 Homodyne Detection

Many measurements on quantum systems introduce noise in the system,
such that successive measurements of the same observable yield different re-
sults. This is, e.g., the case for detections done by photocounting techniques.
We want to avoid this back-action of the measurement on the detected ob-
servable due to the measuring process. This is exactly the case for a quan-
tum non-demolition (qnd) measurement, which is a measurement where one
monitors an observable that can be measured repeatedly with the result of
each measurement being completely determined by the result of an initial,
precise measurement [1].

To detect a squeezed state, we need a phase-sensitive scheme that mea-
sures the variance of a quadrature (xph or pph) of the field. This can be done
with homodyne detection which is a qnd measurement [33–35]. The setup
for homodyne detection is shown in Fig. 2.2. The input field, which we want
to measure, is superimposed on the field from a local oscillator at a sym-
metric lossless beamsplitter. All the fields are described by the creation and
annihilation operators. The modes which we detect are

a1 = 1√
2
(A− aph), (2.14a)

a2 = 1√
2
(A + aph) (2.14b)

as there is a π/2 phase shift between the reflected and transmitted beams
for a symmetric beamsplitter. If we take A real, then the currents which we

13



2. Generation of Squeezing in a Cavity

bs

A

aph

a1

a2

i1

i2

−

Figure 2.2: Setup for homodyne detection. The field we want to detect,
aph, is mixed with a field from a local oscillator, A, on a beamsplitter
(bs) which transmits 50% and reflects 50%. This gives two new fields,
a1 and a2, which are detected. The currents from the detectors, i1 and
i2 are then subtracted.

measure on the detectors are

i1 ∝ a†
1a1 = 1

2 (A− aph)†(A− aph)

= 1
2 A2 − 1

2 A(a†
ph + aph) + 1

2 a†
phaph,

(2.15a)

i2 ∝ a†
2a2 = 1

2 (A + aph)†(A + aph)

= 1
2 A2 + 1

2 A(a†
ph + aph) + 1

2 a†
phaph.

(2.15b)

The currents are then subtracted such that we can measure xph

i2 − i1 ∝ A(a†
ph + aph) ∝ xph. (2.16)

If we insert a phase shifter on the photon field (xph, pph) before it reaches the
beamsplitter, then we can shift the phase of this field with π/2. By doing this
we can measure pph instead of xph.

2.6 Conclusion

We have explained how to generate squeezed light in an opo. We have done
this by using the conventional method where we made a Fourier transform
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Conclusion

into frequency space. In this way we showed that the quadrature fields pc
and xc were squeezed and antisqueezed, respectively. Furthermore, we have
introduced the concepts of squeezing, entanglement, and homodyne detec-
tion which will be used throughout this thesis.
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Three

Gaussian Description of Squeezed
Light

We present a Gaussian description of squeezed light generated in an op-
tical parametric oscillator. We describe the squeezing of the light both
inside the cavity and of the output field and by using the Gaussian de-
scription we are able to describe what happens, when we make a homo-
dyne detection of the output field. Our theory also shows that the light
is only squeezed if we look for long enough time and we show how to
model a realistic detector with finite bandwidth. This chapter is based on
paper [III].
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3. Gaussian Description of Squeezed Light

3.1 Introduction

In the previous chapter we introduced the standard treatment of generation
of squeezed light and as we noted it is not obvious how to include, e.g.,
measurements in this theory. Instead we want to use that the squeezed light
produced in an optical parametric oscillator (opo) is in a Gaussian state, im-
plying that the field is fully characterized by the first-order and second-order
correlation functions of the field variables. By using the Gaussian description
which we will introduce in this chapter we are able to describe the squeezing
of the light inside the cavity both with and without homodyne measurements
on the output field. We will also look at the squeezing of the output field and
show how to model a finite bandwidth detector. We do this by adding a sec-
ond cavity where the light segments enter and the intracavity field in the new
cavity builds up. With the Gaussian theory we are able to reproduce the re-
sults in the last chapter and, e.g., show that the output field is only squeezed
if we look for long enough times.

In Sec. 3.2 we introduce the Gaussian theory and explain how to use it to
find the uncertainties of the variables. Then in Sec. 3.3 we use the Gaussian
theory to describe the squeezing of the intracavity field. Finally in Sec. 3.4
we examine the output field by using two different methods and show how
to model a detector with finite bandwidth.

3.2 Gaussian Theory

We look at the situation in the previous chapter again, but this time we will
use Gaussian variables to describe the situation shown in Fig. 3.1. The light
inside the cavity is described by the Gaussian variables (xc, pc) defined in
Eq. (2.5). We want to consider the continuous emission of light by the cavity,
so we imagine one segment of light after the other leaving the cavity. The
segments have a time duration τ. The linear transformation between the
states of the cavity field and a segment of light initially incident on the cavity,
and eventually propagating away from the cavity (2.8) is easy to deal with,
because a state which is initially Gaussian in the field variables will remain
Gaussian at later times. So an initially empty cavity and the incident vacuum
field will lead to Gaussian states at all later times. We want to consider
the continuous emission of light by the cavity, and we hence imagine one
segment of light after the other leaving the cavity, and all field quadratures
being given by a multi-mode Gaussian distribution.
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m m

m

2ωc

︸ ︷︷ ︸
L = cτ

Figure 3.1: Generation of squeezed light by an optical parametric pro-
cess pumped by a classical field at 2ωc. As on Fig. 2.1 the light inside
the cavity (xc, pp) is shown in red, the input vacuum field (xph,in, pph,in)
is shown in blue, and the output field (xph,out, pph,out) is shown in
green. We slice the continuous beam into field segments of duration
τ and length L = cτ. The figure shows three field segments in the vac-
uum state which enter the cavity, where a non-linear medium generates
squeezing. Four segments of light are shown propagating away from
the cavity.

As already mentioned, a Gaussian state is fully characterized by the mean
value vector of all canonical variables, which we can arrange in a column
vector y, with m = 〈y〉 and the covariance matrix γ where γij = 2Re〈(yi −
〈yi〉)(yj − 〈yj〉)〉. Accordingly, we only need update formulas for m and γ
to account for the quantum state of the entire system. If the output field
is discretized in N segments m has dimension (2N + 2) with 2N effective
variables (xph,i, pph,i) for the output field and 2 variables (xc, pc) for the cavity
mode. The covariance matrix γ has dimension (2N + 2)× (2N + 2). These
finite objects are of course far easier to deal with than the full N + 1 tensor
products of infinite dimensional Hilbert spaces. In practice the formalism can
be made even simpler if we assume that the output beam is detected right
after it is emitted from the cavity, and hence the quantum state of each light
beam segment is destroyed and only the classical output value is retained,
while the next segment emerges from the cavity.

In the following we will explain the theory and in the next section we will
show how to use this theory by using the squeezing inside the opo as an ex-
ample. We will explain how to include linear transformations and homodyne
measurements in the theory. The equations can be solved numerically and
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3. Gaussian Description of Squeezed Light

in some cases also analytically by deriving and solving a system of coupled
differential equations. We will conclude this section by writing a recipe for
how to obtain an analytical formula for the covariance matrix.

Linear Transformations

Let us consider the interaction between a single incident segment of light
and the intracavity field, and let us write the linear transformation of the
four field variables y = (xc, pc, xph, pph)T as follows

y 7→ Sy, (3.1)

where the elements of the 4× 4 matrix S follow directly from the transforma-
tion (2.8). Under this transformation, the mean values m and the covariance
matrix γ transform as

m(t + τ) = Sm(t), (3.2)

γ(t + τ) = Sγ(t)ST . (3.3)

Homodyne Measurements

If we want to perform a homodyne measurement on the output field, we
write the mean value vector as

m =
(

mA
mB

)
, (3.4)

where mA is the mean value vector for the intracavity field variables y1 =
(xc, pc)T and mB is the mean value vector for the continuous beam y2 =
(xph, pph)T . We white the 4× 4 covariance matrix as

γ =
(

Aγ Cγ

CT
γ Bγ,

)
, (3.5)

where Aγ is the covariance matrix for y1, Bγ is the covariance matrix for y2,
and Cγ represents their mutual correlations. An advantage of the Gaussian
description is that the back action on the residual system due to measurement
may be accounted for explicitly. If we measure the variable xph, due to their
mutual correlation, we learn something about the intracavity xc variable, i.e.,
its variance decreases, and simultaneously, to fulfill Heisenberg’s uncertainty
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relation, Var(pc) increases. From Refs. [21, 22], we have the explicit update
formula for the intracavity field covariance matrix after homodyne detection
on the beam segment

Aγ 7→ Aγ −Cγ(πBγπ)−CT
γ , (3.6)

where π = diag(1, 0), and ()− denotes the Moore-Penrose pseudo-inverse, so
(πBγπ)− = diag(B−1

γ11
, 0) with Bγ11

twice the variance of xph. To understand
this formula we can look at it classically, and this is done on page 21. First we
note that this result does not depend on the actual outcome of the measure-
ment. However the measurement affects the mean values of the intracavity
field variables. We also see that the beam segment has disappeared from the
treatment, but to treat the interaction with the next segment we build the
covariance matrix (3.5) describing the intracavity field and this new segment
with

Bγ 7→ 1, (3.7)
Cγ 7→ 0, (3.8)

corresponding to an incident vacuum state with no correlation with the cavity
field yet. The time evolution of m depends on the actual measurements in the
optical detection which is a random process. Therefore the time evolution of
the mean value vector is a stochastic process, and it transforms as [8, 20, 21]

mA 7→ mA + Cγ(πBγπ)−(χ, ·)T , (3.9)
mB 7→ 0, (3.10)

where χ is the difference between the measurement outcome and the expec-
tation value of xph, i.e., a Gaussian random variable with mean value zero
and variance 1/2. Since (πBγπ)− = diag(B−1

γ11
, 0), we do not need to spec-

ify the second entry in the vector (χ, ·). Eq. (3.10) describes a new vacuum
segment entering the cavity field.

Classical Explanation of Formulas

To try to understand Eq. (3.6) and (3.9) we will as already promised look at
it classically [36]. The distribution for the variable y = (y1, y2) is given by

P(y) ∝ exp
(
− 1

2 (y−m)γ−1(y−m)T). (3.11)
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3. Gaussian Description of Squeezed Light

If we measure y2, we get a high uncertainty on y1 and a low uncertainty on
y2. When we only keep terms quadratic and linear in y1 the distribution is

P(y) ∝ exp
(
− 1

2
[
y1(γ−1)11yT

1 − y1(γ−1)11mT
1 −m1(γ−1)11yT

1

+ (y2 −m2)(γ−1)21yT
1 + y1(γ−1)12(y2 −m2)T]). (3.12)

We know that after the measurement the distribution is given by

P(y) ∝ exp
(
− 1

2
[
y1γ′−1

11 yT
1 − y1γ′−1

11 m′T
1 −m′

1γ′−1
11 yT

1
])

, (3.13)

so by comparing these distributions we are able to determine the new mean
value vector m′

1 and covariance matrix γ′11. The transformation of γ11 is then

(γ′11)
−1 = (γ−1)11 =

[
(γ11)−1 − γ12(γ22)−1γ21

]−1
, (3.14)

where we have used a formula for the inverse of a matrix (see, e.g., Ref. [37]).
This equation corresponds to Eq. (3.6). The transformation of the mean value
vector requires more calculations but can be derived in a similar way and the
result is

m′
1 = m1 − γ11(γ−1)12(y2 −m2)

= · · · = m1 + γ12(γ11)−1(y2 −m2)T ,
(3.15)

which corresponds to Eq. (3.9).

Finding and Solving the Differential Equation

For the present we are interested in the uncertainty of the states, so we only
need the covariance matrix γ, but in chapter 7 we will return to the mean
value vector. To find the time evolution of the covariance matrix, we prop-
agate the system according to Eq. (3.3), and we implement the effect of the
subsequent measurement by Eq. (3.6). The continuous production and prob-
ing of the beam is obtained by repetition of the above steps. This can be done
numerically with τ sufficiently small, or we may, in the limit of small time
increments τ → 0, derive a differential equation for the intracavity field Aγ.

dAγ

dt
= lim

τ→0

Aγ(t + τ)−Aγ(t)
τ

. (3.16)

22



Gaussian Theory

In the cases where we do homodyne measurements there will be quadratic
terms in this differential equation. To get rid of these we use that the differ-
ential equation is of the general non-linear matrix Ricatti form [11]

Ȧγ(t) = CR −DRAγ(t)−Aγ(t)ER −Aγ(t)BRAγ(t), (3.17)

where the matrices CR, DR, ER, and BR are all derived from the expres-
sions (3.16). As shown in Ref. [11] the solution for Aγ can be expressed in
terms of the solutions of two coupled linear matrix equations

Aγ = WU−1, (3.18)

where

Ẇ = −DRW + CRU, (3.19)

U̇ = BRW + ERU. (3.20)

We now have twice as many differential equations as before, but they only
contain linear terms. Even though these are easier to solve than the original
differential equation we have not been able to find an analytical solution in
all cases. The length of one of our results (Eq. (A.1)) may indicate why this is
the case.

Recipe for Determining the Covariance Matrix

As a summary of this section, here is a recipe for how we analytically deter-
mine the covariance matrix.

1. We write the Gaussian variables in the vector y, for example y =
(xc, pc, xph, pph)T . x and p for the variable we measure must be last.

2. We then find the transformation matrix S. Both here and in step 5 and 6

it is only necessary to keep terms at most first order in τ.

3. We now write down the initial value of the covariance matrix, for ex-
ample it could be γ0 = 1.
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3. Gaussian Description of Squeezed Light

4. After n time-steps the value of the covariance matrix right after a ho-
modyne detection is1

γn =
(

An 0
0 12×2

)
, An =

(
a11 a12
a12 a22

)
. (3.21)

5. We find the covariance matrix after n + 1 time-steps by applying the
transformation matrix: γ̃n = SγnST . . .

6. . . . and by applying the homodyne detection:

γ̃n =
(

Ãn C̃n
C̃T

n B̃n

)
(3.22)

and An+1 = Ãn − C̃n(πB̃nπ)−C̃T
n .

7. Now we rewrite it into a differential equation: Ȧ = (An+1 −An)/τ.

8. We find matrices CR, DR, ER, and BR such that we can rewrite the
differential equation on Ricatti form: Ȧ(t) = CR −DRA(t)−A(t)ER −
A(t)BRA(t).

9. We solve these differential equations: Ẇ = −DRW + CRU and U̇ =
BRW + ERU with boundary conditions that fulfill A0 = W0U−1

0 , for
example W0 = A0 and U0 = 1.

10. Finally we find the covariance matrix: A = WU−1.

3.3 Squeezing Properties of the Intracavity Field

We will now apply the above general formalism to the squeezed light prob-
lem. The field variables are y = (xc, pc, xph, pph)T , and we want to find
Var(xc) and Var(pc) so we look at the time evolution of the covariance matrix

1If there are more than 4 variables in y then the size of these matrices should be changed
accordingly.
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Squeezing Properties of the Intracavity Field

γ. The initial state is a vacuum state, so γ(0) = 14×4. We find the transfor-
mation matrix S from the transformations (2.8)

S =


ξ + 2gτ 0

√
Γτ 0

0 ξ − 2gτ 0
√

Γτ

−
√

Γτ 0 ξ 0
0 −

√
Γτ 0 ξ

 . (3.23)

When we apply the update formulas for the linear transformation and for
the homodyne detection, we find this differential equation

Ȧγ =
d
dt

(
a11 a12
a12 a22

)
=
(

(4g− Γ)a11 − Γa2
11 −Γa11a12

−Γa11a12 (−4g− Γ)a22 + Γ− Γa2
12

)
.

(3.24)

To solve this differential equation we rewrite it on Ricatti form (3.17) and find
the following matrices

CR =
(

0 0
0 Γ

)
, (3.25a)

BR =
(

Γ 0
0 0

)
, (3.25b)

DR =
(
−2g− Γ/2 0

0 2g + Γ/2

)
, (3.25c)

ER = DR. (3.25d)

This gives us a new set of linear first-order differential equations which we
can solve using Eq. (3.18)–(3.20). The solution for the variance of pc is

Var(pc) =
1
2

Γ− 4g
Γ− 4ge−(Γ−4g)t

, (3.26)

while the variance of xc is the same as when we did not measure on the
output field (2.9a). In this case Var(xc) × Var(pc) = 1/4 and we have a
minimum uncertainty state of the intracavity field at all times. If 4g < Γ we
reach steady state for large times, and the variances then read

Var(xc) =
1
2

Γ
Γ− 4g

, (3.27a)

Var(pc) =
1
2

Γ− 4g
Γ

. (3.27b)
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3. Gaussian Description of Squeezed Light

In Fig. 3.2, we have plotted the equations (2.9a), (2.9b), and (3.26), which
show how the variance of the Gaussian variables inside the cavity depends
on time both with and without measurements on the output beam. The
figure shows how pc becomes squeezed as a function of time, and xc becomes
antisqueezed.

0 2 4 6 8
0

1

2

3

Time t in units of Γ−1

V
ar

(x
c)

,V
ar

(p
c)

Figure 3.2: Variances of the cavity variables xc and pc as a function of
time. We use Γ = 2π × 6× 106 s−1 and g = 0.2Γ which are realistic ex-
perimental parameters for opo’s [38]. The variances of the antisqueezed
variable xc with and without homodyne detection of the xph variable of
the output field are identical and shown by the upper blue curve. The
black and the red curves show the variances of the squeezed variable pc
without and with homodyne detection of the output field, respectively.

3.4 Squeezing Properties of the Emitted Beam

In this section we will investigate the squeezing of the output beam using two
different methods. First we will study the correlations between the segments
in the emitted beam. Then we will describe how to model a detector with
finite bandwidth.
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3.4.1 Collective Observable for Many Light Segments

m m

m

2ωc
xN · · · x2 x1

︸ ︷︷ ︸
xT

Figure 3.3: The figure shows how we label the beam segments of the
output field which are accumulated in xT and pT given in Eq. (3.28).
We only obtain squeezing if we observe many beam segments, not if
we only observe one segment.

We now turn to the squeezing of the output beam. To study the correla-
tions between different individual segments we define the following opera-
tors shown on Fig. 3.3

xT = 1√
N

N

∑
i=1

xphi
, (3.28a)

pT = 1√
N

N

∑
i=1

pphi
, (3.28b)

where T = τN is the accumulated time in N segments each of duration τ and
where the field variables of the ith segment are retained in the formalism. As
the calculations are a bit complicated, we will discuss the result first and in a
moment we will show how to calculate the variances of these quantities. The
result is given in Eq. (3.43)

Var(xT) =
1

2T(Γ− 4g)3

[
(Γ− 4g)(Γ + 4g)2T

−32Γg + 32Γge(−Γ/2+2g)T
]
.

(3.29)

The result for Var(pT) is obtained by replacing g with −g. If we let T → 0
corresponding to only a few segments, we obtain Var(pT) = 1/2 showing
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3. Gaussian Description of Squeezed Light

that there is no squeezing if we only consider short times. If, on the other
hand, we let T → ∞ corresponding to many segments, we obtain

Var(xT) → 1
2

(Γ + 4g)2

(Γ− 4g)2 . (3.30)

These results are in full agreement with the ones obtained by the usual quan-
tum optics treatment, discussed in Sec. 2.4 (see Eq. (2.13)).

Calculations

To calculate the variance of xT and pT defined in Eq. (3.28) we use the Gaus-
sian description which were introduced in Sec. 3.2. This time we get more
and more light segments so our variable vectors and matrices grow as a func-
tion of time. This section describes how we handle this situation.

The initial variables are y1 = (xc, pc, xph1
, pph1

) and the initial intracavity
field and incident vacuum segment covariance matrix is

γ1 =


a11 a12 0 0
a12 a22 0 0
0 0 1 0
0 0 0 1

 . (3.31)

The associated transformation matrix is given by Eq. (2.8)

S1 =


ξ + 2gτ 0

√
Γτ 0

0 ξ − 2gτ 0
√

Γτ

−
√

Γτ 0 ξ 0
0 −

√
Γτ 0 ξ

 . (3.32)

where ξ = 1− Γτ/2 as introduced in Eq. (2.8). After the interaction γ̃1 =
S1γ1ST

1 . We now build the dynamics recursively illustrated in Fig. 3.3 by in-
serting two rows and columns between the second and third row and column
in γ̃. In this way we represent the subsequent incident vacuum segments by

γk+1 =

 {γ̃k}(1:2,1:2) 0 {γ̃k}(1:2,3:2k+2)
0 12×2 0

{γ̃k}(3:2k+2,1:2) 0 {γ̃k}(3:2k+2,3:2k+2)

 . (3.33)
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The transformation matrix is

Sk =
(

S1 0
0 1(2k−2)×(2k−2)

)
, (3.34)

and γ̃k = SkγkST
k . Eq. (3.34) and (3.33) are now inserted, and the number of

variables grows with time as we get more and more light segments, yN =
(xc, pc, xphN

, pphN
, . . . , xph1

, pph1
).

If a12 = 0 then every second element in γ is zero and γ can be rewritten
on block diagonal form with similar xph and pph blocks. The system of
equations for the xph, yN = (xc, xph1

, . . . , xphN
), variables can then be written

as

Sk =

1− Γτ/2 + 2gτ
√

Γτ 0
−
√

Γτ 1− Γτ/2 0
0 0 1(k−1)×(k−1)

 , (3.35)

γ1 =
(

a11 0
0 1

)
, (3.36)

γk =

Ak 0 Ck
0 1 0

CT
k 0 Bk

 , (3.37)

where Ak is a real number, Ck is a 1× (k − 1) row vector, and Bk is a (k −
1)× (k− 1) matrix.

From this we find the recurrence equations

Ak+1 = (1− Γτ/2 + 2gτ)2 Ak + Γτ, (3.38)

CT
k+1 =

(
−
√

Γτ(1− Γτ/2 + 2gτ)Ak +
√

Γτ(1− Γτ/2)
(1− Γτ/2 + 2gτ)CT

k

)
, (3.39)

Bk+1 =
(

ΓτAk + (1− Γτ/2)2 −
√

ΓτCk
−
√

ΓτCT
k Bk

)
, (3.40)
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3. Gaussian Description of Squeezed Light

which can be solved, and the variance of xT is found to be

Var(xT) =
1
N

N

∑
i=1

N

∑
j=1

Cov(xi, xj)

= a11

[
Γτ

2N
1− α2N

1− α2 +
Γτα4

N(1− α)

(
1− αN

1− α
− 1− α2N

1− α2

)]
+

Γτ2

2(1− αN)
− Γτ2

2N
1− α2N

(1− α2)2 + 1
2 (1− Γτ/2)2

−Γτ(1− Γτ/2)
1

1− α
+

Γτ(1− Γτ/2)
N

1− αN

(1− α)2

+
Γτ2α

N(1− α2)(1− α)

(
N − 1− αN

1− α
+ α3 1− α2N

1− α2 − α3 1− αN

1− α

)
,

(3.41)

where α = 1− Γτ/2 + 2gτ. If we let T = Nτ and then let τ → 0 then

Var(xT) → 1
2T(Γ− 4g)3

{
(Γ− 4g)(Γ + 4g)2T

−4Γ(Γ + 8g) + 4a11Γ(Γ− 4g)

−8Γ
[
a11(Γ− 4g)− (Γ + 4g)

]
e(−Γ/2+2g)T

−4Γ
[
Γ− a11(Γ− 4g)

]
e(−Γ+4g)T

}
.

(3.42)

In the T → ∞ limit, the first term dominates, and the expression for Var(xT)
does not depend upon a11.

If we wait until the cavity is in steady state we can insert a11 = Γ
Γ−4g in

Eq. (3.42), and we obtain

Var(xT) =
1

2T(Γ− 4g)3

[
(Γ− 4g)(Γ + 4g)2T

−32Γg + 32Γge(−Γ/2+2g)T
]
,

(3.43)

and

Var(pT) =
1

2T(Γ + 4g)3

[
(Γ + 4g)(Γ− 4g)2T

−32Γg− 32g(Γ− 4g)e−(Γ/2+2g)T

−64g2e−(Γ+4g)T
] (3.44)
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Squeezing Properties of the Emitted Beam

for the variances of the quadrature components.

3.4.2 Finite Bandwidth Detection

An alternative way to extract the squeezed component of the emitted beam,
is to use a frequency filter, that selects the frequency range of interest. The
modelling of such a detector involves a second cavity, in which the light
segments enter and the intracavity field in the second cavity builds up. The
squeezed beam contains photons in the relevant frequency band, but not only
the intensity builds up in the detecting cavity, we also expect the intracavity
field in this cavity to show squeezing properties.

m m

m

m m

m

2ωc

L

Figure 3.4: Proposed setup for the characterization of the spectrum of
squeezed light from on opo (to the left). The squeezing properties of
the single-mode field accumulated in the frequency tunable cavity to
the right are determined (see text).

The variables used in a Gaussian treatment of this problem, correspond-
ing to the two cavity fields and the propagating beam segment, are y =
(xc1 , pc1 , xc2 , pc2 , xph, pph) and the Heisenberg equations of motion are ob-
tained by a simple extension of the expressions (2.8) already used in the case
of a single cavity, where we replace Γ with Γ1. The second cavity has a decay
constant Γ2 and a cavity resonance frequency ωc + δ. In our frame rotating
at ωc the field variables in the second cavity obey the equations

xc2(t + τ) = (1− Γ2τ/2)xc2(t) + iδτpc2(t) +
√

Γ2τxph,out(t), (3.45a)

pc2(t + τ) = (1− Γ2τ/2)pc2(t)− iδτxc2(t) +
√

Γ2τpph,out(t), (3.45b)

where xph,out, pph,out are the quadrature variables for the field leaving the
first cavity, cf., Eqs. (2.8c) and (2.8d). In Eq. (3.45) the field incident on the
second cavity is the output field from the first cavity, cf. Fig. 3.4. Due to
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3. Gaussian Description of Squeezed Light

the physical separation L of the two cavities and the finite speed of light the
field variables in Eqs. (2.8c) and (2.8d) should in fact have been delayed by
L/c, but since we are addressing the steady state properties of the system we
can solve Eqs. (2.8c) and (2.8d) with the same time arguments. The output
field from the second cavity is described by equations similar to Eqs. (2.8c)
and (2.8d), but they will not be needed in the following. The detuning δ of the
second cavity can be scanned, and the squeezing parameter of the intracavity
variables xc2 , pc2 reflect the spectral properties of the output beam from the
first cavity.

Figure 3.5 shows the eigenvalues Vmin and Vmax of the 2× 2 covariance
matrix for the probing cavity (xc2 , pc2) as a function of the detuning with
respect to ωc. In Fig 3.5(a) the probing cavity has a damping rate Γ2 compa-
rable with the one of the opo cavity, i.e., the intracavity field builds up with a
memory time shorter than the time needed to see the full effect of squeezing.
In Fig 3.5(b), we use a detector system with a narrow bandwidth, the cavity
builds up light over a longer time interval, and the degree of squeezing is
clearly larger than in 3.5(a). For δ = 0, the Ricatti equation can be solved
analytically, and we obtain

Vmax =
8gΓ2 − 2Γ1Γ2 − 16g2 − Γ2

1
8gΓ2 − 2Γ1Γ2 − 16g2 − Γ2

1 + 8gΓ1
. (3.46)

Here Vmin is obtained from Vmax by replacing g with −g. Figure 3.6 shows
Vmin and Vmax as a function of Γ2. For large Γ2, the second cavity is equally
fed by a wide range of frequency components, and the variance is dominated
by vacuum uncertainty: Vmin = Vmax = 1/2. If Γ2 = 0 we get

Vmax =
16g2 + Γ2

1
(Γ1 − 4g)2 , (3.47a)

Vmin =
16g2 + Γ2

1
(Γ1 + 4g)2 . (3.47b)

Which equals the long-time integrated amplitudes (3.30).
We note that the calculations here were significantly easier than in the

case where we treated a large number of light segments simultaneously. This
is because the mode of the second cavity in practice integrates the incident
field over time and stores the contribution of many short beam segments in
a single set of variables. We believe that this is a useful model of a realistic
detector with finite bandwidth, and that the approach can be used quite
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Figure 3.5: The variances Vmin and Vmax of the field inside the probing
cavity as function of the detuning δ of this cavity with respect to ωc
in units of Γ1. We have used Γ1 = 2π × 6× 106 s−1 and g = 0.2Γ1 as
in Fig. 3.2. In (a) we have used a damping rate comparable with the
one of the opo cavity, Γ2 = Γ1/25, so we do not see the full effect of
squeezing. In (b) the damping rate is much smaller, Γ2 = Γ1/400, and
consequently the degree of squeezing is much larger than in (a).
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3. Gaussian Description of Squeezed Light
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Figure 3.6: Shows the variances Vmin and Vmax of the field inside the
probing cavity as a function of the decay width for δ = 0. We have used
Γ1 = 2π × 6× 106 s−1 and g = 0.2Γ1.

generally to investigate how finite optical bandwidth detection affects the
sensitivity of metrology and the entanglement and spin squeezing of atomic
samples.

3.5 Conclusion

In summary, we have presented a Gaussian state description of the light from
an optical parametric oscillator and its interaction with large atomic samples.
The treatment is very effective, because the state of the parts of the beam that
have just left the opo cavity can be treated as a single mode, corresponding
to a short beam segment, and after the interaction, the segment can be elimi-
nated from the formalism. In this chapter, we presented the dynamics when
the field is probed by homodyne detection, and it is turned into classical in-
formation; if the beam propagates away without detection, it may be traced
out of the formalism, which is an even simpler operation in the Gaussian for-
malism, since the corresponding rows and columns in the covariance matrix
should just be removed. Finite bandwidth effects were included in the treat-
ment by retaining the quantum state of the intracavity field, which is also a
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single field mode, i.e., at the price of adding a single pair of canonically con-
jugate variables (xc, pc), which in the Gaussian formalism is done by adding
two extra rows and columns to the covariance matrix.

The use of squeezed light holds the potential to, e.g., improve spin squeez-
ing, entanglement, and precision probing, and in chapter 5 we will demon-
strate such an improvement in the case of magnetometry compared with the
infinite bandwidth case.
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Four

Magnetometry

In this chapter we will use the Gaussian theory to describe how to esti-
mate a magnetic field. When a magnetic field interacts with a trapped
gas of spin polarized atoms, the magnetic field causes a rotation of the
atomic spin. This rotation affects a probe beam propagating through the
atomic gas and by measuring the probe beam we get an estimate of the
magnetic field. In this chapter we will also discuss how to include noise
in the Gaussian theory.
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4. Magnetometry

4.1 Introduction

We present a theory for the estimation of a scalar magnetic field by its influ-
ence on an ensemble of trapped spin polarized atoms which is continuously
probed by a light beam like it is done in Refs. [8, 39–43]. The setup is shown
in Fig. 4.1. The atoms interact off-resonantly with a continuous laser field,
and the measurement of the polarization rotation of the probe light [44],
induced by the dispersive atom-light coupling, leads to spin-squeezing of
the atomic sample. This method enables an estimate of the magnetic field
which is more precise than that expected from standard counting statistics.
For polarized light and polarized atoms we can describe the non-classical
components of the collective spin angular momentum for the atoms and the
collective Stokes vectors of the light field by effective Gaussian position and
momentum variables, and this description is practically exact.

x

y

z

By

Figure 4.1: Setup for measuring the B-field component along the y-
axis. In our method we use an atomic gas polarized along the x-axis
and a photon probe beam propagating along the y-axis with a classical
Sx. The B-field causes a rotation of the atomic spin Jz, and Jz causes a
rotation of the Stokes parameter Sy, so by measuring Sy we obtain an
estimate of the B-field.

The purpose of introducing the Gaussian state formalism is to provide
a theoretical approach that allows a treatment of the interaction between
light and an atomic sample in the regime where the quantum state of the
atoms changes both because of the interaction itself and because the con-
tinuous measurements of the light field after the interaction teaches the ob-
server about the state of the atoms. This measurement induced back-action
on the quantum state of the atoms plays a role in atomic magnetometry. It
has been used to spin squeeze atomic gases [43] and to entangle pairs of
gases [24, 39, 45], and it recently played an important role in the realization
of an atomic memory for light [45, 46]. Another advantage of the Gaussian
formalism is that it is also possible to include noise. We will do this by in-
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Gaussian Variables

troducing stimulated emission of the atoms and photon absorption into our
Gaussian description.

We have three kinds of variables (atoms, photons, and the B-field) and in
Sec. 4.2 we will describe these variables and describe how to include them in
the Gaussian theory. In Sec. 4.3 we will look at the interactions between these
variables. It is due to these interactions that it is possible to estimate the B-
field. Then in Sec. 4.4 we will use the Gaussian theory to estimate the B-field.
Instead of estimating the B-field indirectly by measuring on the probe beam
we could do a measurement directly on the atoms and this is discussed in
Sec. 4.5. Finally in Sec. 4.6 we will include noise in the Gaussian theory and
discuss how it affects the results.

4.2 Gaussian Variables

4.2.1 Atomic Variables

We consider a gas with a macroscopic number Nat of atoms with two degen-
erate Zeeman states. Initially, all the atoms are prepared by optical pumping
in the same internal quantum state, and all interactions are assumed to be
invariant under permutations of the atoms. The dynamics are conveniently
described by the collective effective spin operator J = h̄

2 ∑i σi with σi being
the Pauli matrices describing the individual two-level atoms. The atoms are
initially prepared in such a way that their spin is polarized along the x-axis,
and we assume only a small depolarization during the interaction, so that
the operator Jx can be well approximated by a constant number 〈Jx〉 = h̄Nat

2 .
The other two projections of the collective spin, Jy and Jz, obey the commu-
tation relation [Jy, Jz] = ih̄Jx and the resulting uncertainty relation on Jy and
Jz, i.e., on the number of atoms populating the σy and σz atomic eigenstates,
precisely reflects the binomial distribution of atoms on these states. The com-
mutator may be rewritten as [xat, pat] = i for the effective canonical position
and momentum variables

xat =
Jy√
h̄〈Jx〉

, (4.1a)

pat =
Jz√

h̄〈Jx〉
, (4.1b)

and the binomial population statistics of the collective states nicely maps to
the Gaussian probability distributions of xat and pat.
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4. Magnetometry

4.2.2 Stokes Parameters

The polarization of light can be described using the Stokes vector which de-
scribes the difference between the number of photons with different polar-
izations (see, e.g., [47])

Sx = 1
2 (nx − ny) = 1

2 (a†
σ+ aσ− + a†

σ− aσ+), (4.2a)

Sy = 1
2 (n+45◦ − n−45◦) = i

2 (a†
σ− aσ+ − a†

σ+ aσ−), (4.2b)

Sz = 1
2 (nσ+ − nσ−) = 1

2 (a†
σ+ aσ+ − a†

σ− aσ−). (4.2c)

The light propagates in the z-direction, and x, y, and ±45◦ refer to linear
polarized light in the xy-plane, whereas σ± refers to right and left circular
polarized light. The Stokes vector satisfies angular momentum commutation
relations

[Sy, Sz] = ih̄Sx. (4.3)

This can be shown by inserting the Stokes parameters from Eq. (4.2) into
Eq. (4.3) and then use the commutation relations for a and a†. In this case the
probe beam propagates along the y-axis and is linearly polarized such that

its Stokes parameter Sx is classical, 〈Sx〉 =
h̄Nph

2 , where Nph is the number of
photons.

From the Heisenberg uncertainty relation we obtain

Var(Sy)×Var(Sz) ≥
S2

x
4

. (4.4)

If Var(Sy) = Var(Sz) = Sx/2 we say that the noise of Sy and Sz is at the
shotnoise level.

We will also introduce dimensionless position and momentum operators
for the non-classical components of the Stokes vector

xph =
Sy√
h̄〈Sx〉

, (4.5a)

pph =
Sz√
h̄〈Sx〉

, (4.5b)

as we did for the atomic variables in Sec. 4.2.1. The commutation relation is
[xph, pph] = i.
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4.2.3 The Magnetic Field

The B-field is a classical parameter, but we will here treat it as a quantum
variable. The reason why we can do this is that a classical variable can be
seen as a quantum variable for which a classical description is sufficient. We
could also imagine a canonically conjugate variable to B having an uncer-
tainty much larger than required by Heisenberg’s uncertainty relation. How-
ever, we do not need this conjugate variable and will therefore not include it
in our calculations.

In the following we will use quantum non-demolition (qnd) measure-
ments and this implies that the variance of the static B-field decreases mono-
tonically and this is consistent with the classical parameter estimation (we
will not forget what we have already learned about B so the variance of B
cannot increase).

4.3 Interactions in the System

In the last section we have described the atoms, the photons, and the B-field
separately, and thus our Gaussian variables are y = (By, xat, pat, xph, pph)T .
We will now look at the interactions between the B-field and the atoms, and
between the atoms and the photons, which together makes it possible to
estimate the B-field.

4.3.1 Larmor Precession of an Atomic Spin

When atoms are placed in an external magnetic field, the B-field causes a
Larmor rotation of the atomic spin. The Hamiltonian for this interaction is
(see e.g. [48])

Hint =
β

h̄
B · J =

β

h̄
By Jy, (4.6)

where β is the atomic magnetic moment and where we have assumed that
the B-field is oriented along the y-direction. As we can see from Heisenberg’s
equation of motion, the B-field causes a rotation of Jz

J̇z = − β

h̄
By Jx, (4.7)

whereas Jy is unaffected by the interaction.
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4. Magnetometry

4.3.2 Faraday Rotation of the Polarization of Light

When the probe beam passes through the atoms, the polarization of the probe
beam is changed. The Hamiltonian for this interaction is [49, 50]

Hint = 2
g̃2

h̄∆
JzSz. (4.8)

Here ∆ is the detuning from resonance and g̃ =
√

h̄ω
Acτε0

d
h̄ is the coupling

constant, where h̄ω is the photon energy, A is the intersection area, and d is
the atomic dipole moment. From Heisenberg’s equation of motion we can
see that Jz causes a rotation of Sy

Ṡy ∝ JzSx, (4.9)

and because the B-field causes a rotation of Jz, we are able to estimate the
B-field by measuring how much Sy is rotated.

The complete derivation of Eq. (4.8) can be found in, e.g., [49]. Here we
will show a qualitative derivation of the atom–light interaction [49]. When
polarized light passes through an atomic sample the polarization of the light
may change due to different effects. If different polarization components
experience different absorption or different index of refraction, then the po-
larization will change. The absorption profile falls off as 1/∆2 whereas dis-
persion effects fall off as 1/∆, so by choosing the detuning sufficiently large
we can ignore absorption effects. Instead we will in the following consider
different dispersion effects, i.e., situations where the index of refraction is
different for two orthogonal polarization components.

In Fig. 4.2(a) we have a light beam propagating along the z-axis through
an atomic sample which is polarized along the x-axis. If we look at it classi-
cally, then because of symmetry we may have nx 6= ny (linear birefringence),
while, e.g., n+45◦ = n−45◦ and nσ+ = nσ− . In this case x- and y-polarized
light pass through the atoms without any change so Sx is unchanged. If we
instead consider light polarized along the +45◦-direction then it has both an
x-part and a y-part and they experience different phase shifts and thus the
polarization of the light changes. This means that Sy and similarly Sz are
changed when the light passes through the atoms.

In Fig. 4.2(b) we have a similar situation, but now the atoms are polarized
along the z-axis instead of along the x-axis. Classically, a spin pointing along
the z-axis is the same as a charged particle rotating in one direction around
the z-axis, so we may have nσ+ 6= nσ− (circular birefringence), while nx = ny
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nx 6= ny(a) nσ+ 6= nσ−(b)

Figure 4.2: In (a) we have an atomic sample polarized along the x-axis,
so we have nx 6= ny (linear birefringence). This changes the polariza-
tion of a probe beam propagating along the z-axis such that Sy and
Sz change and Sx is unchanged. In (b) the atomic sample is polarized
along the z-axis, so we have nσ+ 6= nσ− (circular birefringence). This
changes the polarization of the probe beam such that Sx and Sy change
and Sz is unchanged.

and n+45◦ = n−45◦ . In this case σ+- and σ−-polarized light is unchanged
when it passes through the atoms, so Sz is unchanged. Linearly polarized
light consists of both σ+- and σ−-polarized light and as they experience dif-
ferent phase shifts the polarization of linear light changes and thus Sx and
Sy change.

Linear birefringence is caused by alignment terms, e.g., j2x − j2y and for
spin-1/2 atoms we have j2x = j2y = 1/4. If the detuning is much larger
than the hyperfine splitting of the excited states, ωhfs, then the probe laser
only experiences the spin-1/2 properties of the electron. Linear birefringence
is approximately proportional to ωhfs/∆2, whereas circular birefringence is
possible for spin-1/2 atoms and it is proportional to 1/∆. We may therefore
assume that the linear birefringence is zero.

We will now consider light propagating along the z-axis that is polarized
along the x-axis and atoms polarized along the z-axis. We have a small spin
component Jz

1 and due to circular birefringence this causes a rotation of Sy

Sy,out(t) = Sy,in(t) + αSx Jz(t), (4.10)

where “in” and “out” refers to the light before and after the interaction with
the atoms and where α is a constant that describes the strength of the inter-
action. This equation corresponds to Eq. (4.9). We neglected linear birefrin-

1For example due to the Larmor rotation caused by a B-field as shown in the previous
section.
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4. Magnetometry

gence, and circular birefringence does not affect Sz, so Sz is unchanged by
this interaction.

4.4 Estimation of the Magnetic Field

In this section we want to find the time-development of the uncertainty of the
B-field so we use the theory described in Sec. 3.2. In this case our Gaussian
variables are y = (By, xat, pat, xph, pph)T . If there is more than one B-field,
atomic gas, or probe beam then these should be included and the corre-
sponding equations for the Gaussian theory should be modified according
to this. This will be the case in chapter 6 where we will investigate how to
estimate B-fields in 2 and 3 dimensions.

If we introduce the Gaussian variables in the Hamiltonians for the Larmor
precession of the atoms (4.6) and the Faraday rotation of the light (4.8) then
we obtain the following effective Hamiltonian in the little time step τ

Hintτ = h̄(κτ pat pph + µτ Byxat). (4.11)

The interaction constants are

κτ = κ
√

τ =
h̄ωd2

∆Ah̄2cε0

√
NatΦ

√
τ, (4.12)

µτ = µτ =
β

h̄

√
Nat

h̄
τ, (4.13)

where the different quantities are defined after Eq. (4.6) and (4.8). We derive
the transformation matrix S using the Heisenberg equations of motion (Ȧ =
1
ih̄ [A,H])

S =


1 0 0 0 0
0 1 0 0 κτ

−µτ 0 1 0 0
0 0 κτ 1 0
0 0 0 0 1

 . (4.14)

We make a homodyne measurement on xph to estimate the B-field. When
we use Eq. (3.5)–(3.8) we let Aγ be the covariance matrix for the B-field and
the atoms, y1 = (By, xat, pat)T , and we let Bγ be the covariance matrix for the
photons, y2 = (xph, pph)T , and Cγ is again the correlation matrix for y1 and
yT

2 .
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Estimation of the Magnetic Field

Physical quantity Value

Initial uncertainty ∆B0 = 1 pT
Total number of atoms Nat = 2× 1012

Total photon flux Φ = 5× 1014 s−1

Intersection area A = 2 mm2

Wavelength λ = 852 nm
Detuning ∆

2π = 10 GHz
Atomic dipole moment d = 2.61× 10−29 Cm
Decay rate of atoms Γ = 3.1× 107 s−1

Small time step τ = 1× 10−8 s
Coupling between atoms and B-fields µ = 8.79× 104 s−1

Coupling between atoms and photons κ2 = 1.83× 106 s−1

Noise due to atomic decay η = 1.76 s−1

Noise due to photon absorption ε = 0.0281

Table 4.1: Values of the physical quantities which we have used in the
calculations. The noise terms will be discussed in Sec. 4.6.

It is possible to find the analytical expression for the covariance matrix as
a function of time. When deriving the differential equation from the update
formulas in Eq. (3.3) and Eq. (3.5)–(3.8), we keep only terms linear in τ, that
is linear in κ2

τ or in µτ . As By only causes a rotation of Jz ∝ pat, xat ∝ Jy does
neither couple to By nor to pat so we only have to solve a 2× 2 system with
y = (By, pat)T . The differential equation can be solved by translating it into
the matrix Ricatti form (3.17). In this case we have

CR = 0, (4.15)

DR =
(

0 0
µ 0

)
, (4.16)

ER = DT
R, (4.17)

BR =
(

0 0
0 κ2

)
. (4.18)

This gives us eight coupled differential equations which can be solved with
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Figure 4.3: Uncertainty of By as a function of time. By using the setup
in Fig. 4.1 the uncertainty decreases as 1/t3/2. The value at t = 5 ms
is ∆By = 5.814× 10−5 pT. We have used the values of Table 4.1 in our
calculations.

this result for the variance of the B-field:

Var(By(t)) =
Var(By0)(κ2t + 1)

1
6 κ4µ2 Var(By0)t4 + 2

3 κ2µ2 Var(By0)t3 + κ2t + 1

−−→
t→∞

6
κ2µ2t3 ∝

1
N2

atΦt3
.

(4.19)

From standard counting statistics we would have expected the variance to
decrease as 1/(Natt). However, it is seen that we get a stronger decrease of
Var(By(t)). Because our measurements squeeze the atoms, the variance on
pat decreases while the variance on xat increases. We get a rapid reduction
with time of the variance with the same 1/t3 scaling as predicted classi-
cally by the Cramer-Rao lower bound on frequency estimation. This bound
is attained theoretically by maximum likelihood analyses and by linear re-
gression on sequences of input data [51], and it was recently demonstrated
experimentally with a data taking system for atomic magnetometry [52]. In
Fig. 4.3 it is shown how the uncertainty of the B-field decrease as a function
of the measuring time. The values we have used to generate the figure is
shown in Table 4.1.
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4.5 Stern-Gerlach Measurement on the Atoms

So far We have estimated the B-field indirectly by measuring the photons
but we might imagine that we would obtain a better result if we measured
directly on the atoms. However, there is a problem with this because when
we measure directly on the atoms we also destroy the state such that we
cannot measure again. It is therefore only possible to do this once, after we
are finished with the measurements on the photons.

We want to take advantage of this possibility by once doing a destructive
Stern-Gerlach measurement on the atoms. When we measure pat we get
directly information about the B-field. This measurement can be made in a
similar way as the measurements on the photons, but now we only look at
the system consisting of the magnetic fields and the atoms. We can use the
transformations in Eq. (3.6)–(3.8) if we let Aγ be the covariance matrix for the
B-field and Bγ the covariance matrix for the atoms and Cγ then contains the
correlations between the B-field and the atoms.

If we perform this measurement at time t we get the following variance

∆B2
ySG

=
∆B2

y0
2
3 κ2µ2∆B2

y0
t3 + 2µ∆B2

y0
t2 + 1

−−→
t→∞

3
2κ2µ2t3 , (4.20)

which, for large t, is a factor of 4 smaller than the result in Eq. (4.19) where we
did not perform a measurement directly on the atoms. So by doing a Stern-
Gerlach measurement in the end we can improve the result with a factor of
4.

4.6 Magnetometry with Noise

So far we have ignored noise, but we will include that now. We look at two
kinds of noise. Due to the photons there is a small probability for stimulated
emission of the atoms which occurs at a rate [8, 53]

η = Φ
σ

A

Γ2

4
Γ2

4 + ∆2
, (4.21)

where Γ is the atomic decay rate and σ = λ2

(2π) is the resonant photon ab-
sorption cross-section. Another kind of noise is the probability for photon
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absorption, which is given by [53]

ε = Nat
σ

A

Γ2

4
Γ2

4 + ∆2
. (4.22)

We need to modify the transformations in section 3.2 in order to include
noise, and to do that we require that ητ = ητ � 1 and ε � 1.

When the atoms decay, the polarization of the atoms also decays and this
introduce noise. One atom has a probability ητ = ητ to decay in time τ so in
this time 〈J〉 7→ (1− ητ)〈J〉. Thus the reduction of the coupling strengths in
every time interval τ is

κτ 7→
√

1− ητκτ (4.23)

and

µτ 7→
√

1− ητµτ . (4.24)

Similarly the photon absorption reduces the polarization of the photons such
that 〈S〉 7→ (1− ε)〈S〉 in a time step τ, but as we use a new pulse in every
time step it does not reduce κτ and µτ correspondingly.

To determine the new transformation of the covariance matrix we derive
how terms like 〈J2

z 〉 and 〈Jx〉 transform. The total spin is a sum of the indi-
vidual spins J = h̄

2 ∑i σ(i) and similarly for the z-component. From this we
get the following expression

〈J2
z 〉 =

h̄2

4

Nat

∑
i=1
〈(σ

(i)
z )2〉+

h̄2

4 ∑
i 6=j
〈σ(i)

z σ
(j)
z 〉

=
h̄2

4
Nat〈(σ

(1)
z )2〉+

h̄2

4
Nat(Nat − 1)〈σ(1)

z σ
(2)
z 〉,

(4.25)

where we have used that there is symmetry under exchange of particles such
that 〈(σ

(i)
z )2〉 = 〈(σ

(1)
z )2〉 for all i and 〈σ(i)

z σ
(j)
z 〉 = 〈σ(1)

z σ
(2)
z 〉 for all i 6= j. In

a time τ, ητ Nat atoms decay. This leads to a decrease in the collective spin
squeezing so in the above expression each Nat should be multiplied with
(1− ητ), but the atoms still provide a contribution of h̄2

4 per atom giving an
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extra term

〈J2
z 〉 7→ h̄2

4 Nat(1− ητ)

+ h̄2

4 Nat(1− ητ)(Nat(1− ητ)− 1)〈σ(1)
z σ

(2)
z 〉

+ h̄2

4 Natητ .

(4.26)

If we now isolate 〈σ(1)
z σ

(2)
z 〉 from Eq. (4.25) and insert it into Eq. (4.26) and if

we use that the number of atoms is large, then we get this transformation

〈J2
z 〉 7→ (1− ητ)2〈J2

z 〉+ h̄2

4 Natητ(2− ητ). (4.27)

In a similar way we find the transformations for the other components

〈Ji〉 7→ 〈Ji〉(1− ητ), i = x, y, z. (4.28)

We are now able to determine how one of the elements in the covariance
matrix transforms by using the transformations in Eqs. (4.27) and (4.28) and
by using that for small ητ

2 Var(pat) = 2(〈P2
at〉 − 〈pat〉2)

= 2
〈J2

z 〉 − 〈Jz〉2

h̄〈Jx〉
7→ h̄Nat

〈Jx〉
ητ .

(4.29)

The other elements in the covariance matrix involving the atoms can be de-
rived in a similar way. The derivation for the photons is nearly identical
except that we do not get the last term in Eq. (4.26) as we use new photons
in each time step and this gives a factor of 1

2 in Eq. (4.29).
To include noise in the transformation we therefore modify Eqs. (3.2)

and (3.3) [53]

m(t + τ) = LSm(t), (4.30)

γ(t + τ) = LSγ(t)STL +
h̄Nat

〈Jx(t)〉M +
h̄Nph

2〈Sx(t)〉N, (4.31)

where we have L = diag(1,
√

1− ητ ,
√

1− ητ ,
√

1− ε,
√

1− ε), M = diag(0,
ητ , ητ , 0, 0), and N = diag(0, 0, 0, ε, ε). In each time step τ the factor in front
of M is divided by (1 − ητ) due to the transformation of 〈Jx〉. We must
also remember to update κτ and µτ due to Eq. (4.23) and (4.24). The update
formulas due to homodyne detection are unchanged.

49
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4.6.1 Analytical Solution

We will now try to solve the equations for estimating a B-field when we
include noise as described above. As in Sec. 4.4 xat does neither couple to
By nor to pat so we “only” have to solve the differential equation for y =
(By, pat)T which we can rewrite on Ricatti form with the following matrices

CR =

0 0

0
Nat

〈Jx(t)〉η

 , (4.32a)

DR =
(

0 0
µ η/2

)
, (4.32b)

ER = DT
R, (4.32c)

BR =

0 0

0
(1− ε)κ2(t)

1− ε
(
1− Nph

2〈Sx(t)〉
)
 . (4.32d)

One can show that the noise terms in DR and ER will have vanishing ef-
fect, and if we restrict ourselves to times corresponding to ηt � 1, we may
neglect the time dependence of 〈Jx〉, 〈Sx〉, and κ such that Nat/〈Jx〉 = 2,
Nph/〈Sx〉 = 2, and κ(t) = κ(0). With these approximations, the resulting lin-
ear equations for the matrices U and W can be solved analytically, leading to
lengthy expressions with sums of products of exponential functions, constant
terms, and terms linear in time t. In the limit

√
ηκ2t � 1, it is an accurate

approximation to maintain only the leading exponential and we find

Var(By(t)) → η

µ2t
. (4.33)

Compared with the result for the noiseless case (4.19), we note that in the
long time limit the uncertainty decreases as 1/(Natt), and not as 1/(N2

att
3).

The black line in Fig 4.4 shows the time evolution of the uncertainty of
the B-field from a numerical calculation with noise included. For short times
the analytical expression disregarding the noise (red line) is a good approxi-
mation, and for long times the numerical result follows the expression (4.33),
shown as a blue curve on the interval between 0.5 and 5 ms.
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Figure 4.4: Uncertainty of the B-field as a function of time. The black
line is the result of a full numerical calculation with noise included and
the value at t = 5 ms is ∆By = 2.333× 10−4 pT. The red line is without
inclusion of noise and the value at t = 5 ms is ∆By = 5.814× 10−5 pT.
The blue curve shows the analytical result of Eq. (4.33) valid for t � 1 s
and

√
ηκ2t � 1. The values which we have used can be found in

Table 4.1.

4.7 Conclusion

In this chapter we have used the Gaussian theory from the previous chapter
to estimate a magnetic field. We estimated the B-field by using that a B-field
causes a rotation of an atomic spin of a gas of spin polarized atoms. Because
the measurement squeezes the atoms the uncertainty of the B-field decreases
as 1/(Natt3/2) instead of 1/

√
Natt. When the photons propagates through

the atoms there is a small probability for stimulated emission of the atoms,
and there is a probability for photon absorption. One of the strengths of the
Gaussian theory is that we can include these noise processes into the theory.
When we did that we found that in the long time limit the uncertainty now
only decreases as 1/

√
Natt. We also showed that by applying a destructive

Stern-Gerlach measurement on the atoms in the end of the measurements the
uncertainty of the B-field would be a factor of 4 smaller.
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Five

Magnetometry with Squeezed Light

In the previous chapter we showed how to estimate a magnetic field.
One way to improve this estimate would be to use a squeezed probe
beam. In this short chapter we will use the squeezed light we generated
in chapter 3 to refine the results of chapter 4. This chapter is based on
the last part of paper [III]

53



5. Magnetometry with Squeezed Light

5.1 Introduction

In the previous chapter we estimated a magnetic field by using the fact that
a B-field causes a Larmor rotation of an atomic spin which again causes a
polarization rotation of a probe beam. We would like to improve this estimate
by using a squeezed probe beam. We will describe a simple model where
we use a squeezed probe beam with infinite bandwidth. Realistic sources
of squeezed light, on the other hand, have a finite bandwidth of squeezing
which implies that correlations exist between the field observables at different
times. This is for example the case for an optical parametric oscillator (opo)
as we showed in Sec. 3.4. We will therefore use the squeezed output light
from the cavity as probe beam.

In Sec. 5.2 we will present a simple model of how to use a squeezed
probe beam to estimate a B-field. In Sec. 5.3 we will describe a more realistic
method, where we use the squeezed light generated in an opo as probe beam.

5.2 Simple Model (Infinite Bandwidth)

A simple (but not correct) way to use squeezed light as probe beam is by
introducing the squeezing parameter r such that Eq. (3.7) is replaced by

Bγ 7→
(

1/r 0
0 r

)
, (5.1)

i.e., every beam segment enters the interaction in a squeezed state. The cal-
culations are very similar to those leading to Eq. (4.19) where we did not
use squeezed light. Going though the calculations we find that κ2 should be
replaced with κ2r in Eq. (4.19)

Var(By(t)) =
Var(By0)(κ2rt + 1)

1
6 κ4r2µ2 Var(By0)t4 + 2

3 κ2rµ2 Var(By0)t3 + κ2rt + 1

−−→
t→∞

6
κ2rµ2t3 ∝

1
rN2

atΦt3
.

(5.2)

So by using squeezed light the B-field estimate is improved with a factor
1/r compared with Eq. (4.19) where we did not use squeezed light as probe
beam.

As noted in Ref. [8], this treatment of a squeezed beam, in the limit of
small τ, is only valid if the squeezing bandwidth is infinite. The squeezing
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Squeezed Light from an Optical Parametric Oscillator (Finite Bandwidth)

properties of the beam from an opo, however, only reveal themselves if a
narrow frequency component is selected, or if the field is integrated over
times longer than the inverse bandwidth of squeezing, which are certainly
longer than the infinitesimal τ employed in the continuous limit, where the
Ricatti equation is solved.

The full probing may well take longer than the inverse bandwidth, and
one would hence expect that one still would benefit from the squeezing in
this longer time limit. We shall verify this expected behavior by a calculation
in which we treat the probing with the field coming out of our opo cavity in
the full Gaussian formalism.

5.3 Squeezed Light from an Optical Parametric Oscillator
(Finite Bandwidth)

The example described in this section serves as a model for how to consider
other atomic probing schemes with realistic squeezed light sources. We treat
the B-field, the atomic variables, the intracavity field, and a single segment
of light y = (By, xat, pat, xc, pc, xph, pph)T as Gaussian variables. As shown

x

y

z

By

m m

m

bs2ωc

Figure 5.1: Setup for estimating a B-field using a squeezed probe beam.
In the cavity, we generate squeezed light which is linearly polarized
along the z-axis. We mix this field at an asymmetric beamsplitter (bs)
with a strong x-polarized beam. The light then passes through a gas of
x-polarized atoms, causing a rotation of the field polarization towards
the z-axis (see the text for further comments).
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5. Magnetometry with Squeezed Light

in Fig. 5.1 the beam segment enters on the cavity mirror in the vacuum state
and it is reflected off the mirror with some squeezing and some entanglement
with the partly transmitted intracavity field. It then interacts with the atoms,
and finally it is detected by homodyne detection, causing a moderate change
of the joint covariance matrix for the B-field, the atoms, and the intracavity
field.

bsa1

A

a2

Figure 5.2: In Fig. 5.1 we showed a setup for estimating a B-field using
squeezed light generated in an opo. This figure shows the notation we
use for the part where we mix the output from the cavity with a strong
x-polarized beam on a beamsplitter (bs).

The opo cavity produces a squeezed vacuum state which is not imme-
diately in an appropriate state for polarization rotation measurements. As
in the previous chapter we need a light beam that propagates along the y-
axis and is linearly polarized along x such that its Stokes operator 〈Sx〉 =
Nph/2 = Φτ/2 is classical. To obtain a suitable state we therefore mix the
field coming out of the cavity a1 with a classical x-polarized field A on a
beamsplitter as shown in Fig. 5.2. We denote the field propagating away
from the beamsplitter and through the atoms with a2. The reflectance and
transmittance of the beamsplitter is ρx = 1 and τx = 0 for x-polarized light
and ρy = 0 and τy = 1 for y-polarized light. The field propagating away from
the beamsplitter is then

a2x = ρx Ax + τxa1x = Ax, (5.3a)
a2y = ρy Ay + τya1y = a1y . (5.3b)
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The Stokes operators for this field is then

Sx = 1
2 (a†

1x
a1x − a†

1y
a1y) = 1

2 A2
x, (5.4a)

Sy = 1
2 (a†

1y
a1x + a†

1x
a1y) = 1√

2
Axxph1

, (5.4b)

Sz = i
2 (a†

1y
a1x − a†

1x
a1y) = 1√

2
Ax pph1

, (5.4c)

where we have chosen the classical field Ax to be real. From Eq. (5.4a) we
observe that Sx is given by the number of photons divided by 2 as requested
(A2

x = Nph). If we use this in Eq. (5.4b) and (5.4c) we obtain the formulas
for xph1

and pph2
in Eq. (4.5). We can therefore use the output field from the

cavity, which is squeezed, directly in our formalism to probe the photons.
We will now use the Gaussian theory to calculate the variance of the B-

field. The transformation matrix to lowest order in τ of the variables is now
given by

S =



1 0 0 0 0 0 0
µτ 1 0 0 0 0 0
0 0 1 κ

√
Γτ 0 −κ

√
τ 0

0 0 0 ξ + 2gτ 0
√

Γτ 0
0 0 0 0 ξ − 2gτ 0

√
Γτ

0 0 0 −
√

Γτ 0 ξ 0
0 −κ

√
τ 0 0 −

√
Γτ 0 ξ


, (5.5)

with ξ = 1− Γτ/2 as introduced in Eq. (2.8a). Note that this matrix com-
bines the elements present in the transformation of the field components
alone (3.23), used to generate squeezed light, and the B-field–atoms and
light–atom interaction (4.14), used to estimate the B-field. Again the beam
segment is inserted in its vacuum state (3.7), and it is probed by homodyne
detection leading to the update formula (3.6). The bandwidth is taken care of
by the intracavity field which establishes the necessary correlation between
beam segments detected at different times. In the continuous limit we find
the corresponding Ricatti equation, and its solution provides the variance
of the B-field as a function of time The analytical result for Var(B) is very
lengthy and given in appendix A. For small times t we get the result without
squeezing as can be seen in Fig. 5.3, and for large t the result is exactly the
same as in the infinite bandwidth case

Var(B(t)) =
6

µ2rκ2t3 (5.6)
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if we identify the squeezing parameter by r = (Γ+4g)2

(Γ−4g)2 . Fig. 5.3 shows the
results of this calculation. The figure shows both the results without squeez-
ing (4.19), with finite bandwidth squeezing (A.1), and the simple infinite
bandwidth result (5.2) with a simple squeezing parameter r applied to each

segment. We take the value r = (Γ+4g)2

(Γ−4g)2 , corresponding to the long time limit
of Eq. (3.30), and we see a good agreement for long times between the two
curves for squeezed states. We also see, that the finite bandwidth curve is
an improvement with respect to the case of non-squeezed light, but that we
have to probe for a time on the order of the inverse squeezing bandwidth
before we see the effect of squeezing. Indeed, the finite bandwidth curve is
to a good approximation simply delayed by 16g 3Γ+4g

(Γ−4g)(Γ+4g)2 compared with
the infinite broad-band squeezed light curve.
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Figure 5.3: Variance of the B-field as a function of time. We use the
same value of g and Γ as in Fig. 3.2 and κ2 = 1.83× 106 s−1 and µ =
8.79× 104 (s pT)−1. The blue line is without squeezing, the black line
is with squeezed light generated in a cavity (finite bandwidth), and the
red line is with the squeezing parameter r (infinite bandwidth).
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5.4 Conclusion

By using squeezed light as probe beam we demonstrated an improvement of
the magnetometer described in chapter 4. We used the squeezed light gen-
erated in an opo from chapter 3 which has a finite bandwidth of squeezing.
For short probing times we obtained the same results as in the previous chap-
ter where we did not use squeezed light. For long probing times the result
agreed with a simple model where we used light with infinite bandwidth of
squeezing. We also showed how the finite bandwidth of squeezing manifests
itself as a time lag before the improvement is obtained in agreement with
the earlier observation that squeezing is only present in a light beam, if one
integrates a sufficiently long part of the beam.
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Six

Magnetometry in Two and Three
Dimensions

In this chapter, multi-component magnetic fields are estimated by the
measurement of suitably chosen atomic observables. Precision and effi-
ciency is gained by dividing the atomic gas into two or more samples
which are entangled by the dispersive atom-light interaction. This chap-
ter is based on paper [II].
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6.1 Introduction

In chapter 4 we investigated how to obtain an estimate of one component
of a magnetic field. If we want to estimate two or three B-field components
we could use two or three setups like the one described in Fig. 4.1 suitably
rotated, but it turns out that other setups are better. In order to make a fair
comparison of different schemes, we shall assume that all measurements are
carried out in a time interval of the same duration, e.g., 5 ms and that the total
photon and atom number used are kept constant. In Eq. (4.19) we found this
formula for the uncertainty of one B-field component for large t

∆B(t) ∝
1

NatΦ1/2t3/2 . (6.1)

From this formula we are able to predict the results for many of the different
measurement schemes which we present in this chapter. If we, e.g., divides
the atoms into two gases and such that we only use half of the atoms to
estimate one B-field component we will expect that the uncertainty increases
with a factor of two compared with the case where we only have one gas.

In Sec. 6.2 and Sec. 6.3 we describe how to estimate two and three B-field
components respectively. In the optimal schemes we use entangled gases so
therefore we quantify the amount of entanglement in Sec. 6.4.

6.2 Measuring Two Magnetic Field Components

In this section we describe how to estimate two B-field components (By and
Bz). In the setup in Fig. 4.1 we could obtain a measurement of one component
by using one atomic gas and one probe beam. If we add another probe
beam we can obtain a measurement of the other B-field component as it
will be described in section 6.2.1. The problem with this approach is that
the two atomic components which we measure through the probe beams do
not commute, so we cannot measure both at the same time with arbitrary
precision. However, we can avoid this problem by using two atomic gases,
which is done in section 6.2.3. In section 6.2.4 we show how to improve the
measurements by entangling the two atomic gases.

6.2.1 Two Probe Beams and One Atomic Gas

Let us first consider how to measure By and Bz using two probe beams and
one atomic gas. We are able to obtain measurements of By by using the setup
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Measuring Two Magnetic Field Components

in Fig. 4.1. In order to obtain estimates of Bz we observe that Bz causes a
rotation of xat ∝ Jy so if we add a second optical probe beam propagating
in the z-direction and with Sx classical then xat will cause a rotation of the
field variable pph ∝ Sz on the second beam which we can then measure.
This gives us a symmetric setup with respect to y and z so we obtain the
same uncertainty on both By and Bz. The problem with this approach is that
unlike the unknown classical quantities By and Bz, the atomic observables xat
and pat do not commute. While the first beam squeezes xat and antisqueezes
pat, the second beam does the opposite. This means that effectively we have
no squeezing of the atoms, leaving us with the 1/t decrease in the variance
of the B-field components, which comes from classical counting statistics, as
shown in Fig. 6.1.
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Figure 6.1: Uncertainty of two B-field components as a function of time.
Here we have used a single atomic gas and two probe beams which
are turned on simultaneously. The joint uncertainty of the two B-field
components at t = 5 ms is ∆By = ∆Bz = 0.1083 pT. We have used the
numerical values of Table 4.1 in the calculations.

6.2.2 Sequential Measurements

To avoid the problem with the non-commuting variables we could either use
two atomic gases as we do in the next section or we could restrict ourselves to
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6. Magnetometry in Two and Three Dimensions

only using one probe beam at a time. If we turn the beams on alternately then
every time we shift to the other probe beam the atoms are antisqueezed. For
this reason it is best only to shift once as we have done in Fig. 6.2, where we
obtain measurements of By in the first half and of Bz in the second half. When
we switch probe beam the atoms have had some time to get rotated so they
have rotated a greater angle, which would give a more precise measurement,
but at the same time the relevant component of the atoms are antisqueezed,
which give a less precise measurement. Which of the final uncertainties is
lowest is thus an interplay between these two effects, and in this case the
final uncertainty of Bz is a bit lower than the final uncertainty of By. The
values at large t of both ∆By and ∆Bz is about a factor 2

√
2 greater than if we

had only estimated one component. This is because we use the same number
of atoms and the same photon flux but we only measure half of the time.
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Figure 6.2: Uncertainty of two B-field components as a function of time
using one atomic gas. By is estimated in the first half of the probing
time and Bz in the second half. The red line is for By and the value
at t = 5 ms is ∆By = 1.647× 10−4 pT. The black line is for Bz and the
value at t = 5 ms is ∆Bz = 1.645× 10−4 pT. We have used the numerical
values of Table 4.1 in the calculations.
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6.2.3 Two Separate Gases and Two Probe Beams

In order to estimate two B-field components more precisely we need to mea-
sure on two commuting variables. We can do this by using two separate
systems and estimate one B-field component on each system. So we divide
our atomic gas into two separate gases and use two probe beams, one for
each gas. The first system is identical to the setup in Fig. 4.1 and is used to
measure By. The second system is nearly identical to the first system except
that the probe beam propagates in the z-direction such that we estimate Bz
by measuring pph on this beam.
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Figure 6.3: Uncertainty of two B-field components as a function of time
using two separate atomic gases and two probe beams. The uncertainty
at t = 5 ms is ∆By = ∆Bz = 1.644× 10−4 pT. We have used the numeri-
cal values of Table 4.1 in the calculations.

The uncertainty of the B-fields as a function of time for the situation just
described is shown in Fig. 6.3 and the result is similar to the result in Fig. 4.3
except that the number of atoms and the photon flux are each divided by two
as they are divided between the two systems. The uncertainty of the B-fields
for large t is proportional to 1/(Nat

√
Φ) so the uncertainty for estimating

two B-field components is 2
√

2 as large as if we had only estimated one com-
ponent. This is the same result as we obtained in the previous section. But
actually the approach described in this section is slightly better, if we include
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6. Magnetometry in Two and Three Dimensions

noise as described in Sec. 4.6. In this approach we use fewer atoms (and a
smaller photon flux) and this reduces the noise giving a better estimate.

6.2.4 Two Entangled Gases and Two Probe Beams

If we entangle two gases we can obtain two commuting variables [39]. This
can be done if we let one gas be polarized along x and the other along −x
such that 〈Jx1〉 = −〈Jx2〉. Then the two observables (Jy1 − Jy2) and (Jz1 −
Jz2), and equivalently (xat1 − xat2) and (pat1 − pat2), commute. Therefore we
want to couple these observables to the B-field components and the probe
beams, so we use the setup shown in Fig. 6.4. Both optical probe beams
have Sx classical, and one beam propagates along y, the other along z. Both
beams pass through both gases and, opposite to the protocol in the previous
section, we use all atoms to estimate both B-field components. The effective
Hamiltonian for this setup is

Hintτ = µτ By(xat1 + xat2) + µτ Bz(pat1 + pat2)

+ κτ(pat1 − pat2)pph1
+ κτ(xat1 − xat2)xph2

,
(6.2)

where the two minus signs can be implemented by changing the sign on κτ

after the probe beams have passed through the first gas. In an experimen-

1

2

1

2

x

y

z

By

Bz

Figure 6.4: Setup for measuring two components of a B-field using
two entangled gases and two probe beams. The spins of the atomic
gases are polarized along x and −x respectively. Both probe beams
have Sx classical and both beams pass through both gases. One beam
propagates along y the other along z.
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Measuring Two Magnetic Field Components

tal setup the change in sign could be effectuated by changing the sign of
the detuning or by interchanging σ+ and σ− polarizations which, e.g., can
be done using a half-wave-plate [47]. In this case the Gaussian state vector
is y = (Bz, By, xat1 , pat1 , xat2 , pat2 , xph1

, pph1
, xph2

, pph2
)T and from the Heisen-

berg equations of motion we get the following transformation matrix

S =



1 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0

µτ 0 1 0 0 0 0 κτ 0 0
0 −µτ 0 1 0 0 0 0 −κτ 0

−µτ 0 0 0 1 0 0 κτ 0 0
0 µτ 0 0 0 1 0 0 −κτ 0
0 0 0 κτ 0 −κτ 1 0 0 0
0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 1 0
0 0 −κτ 0 κτ 0 0 0 0 1


. (6.3)

The time evolution of the uncertainty of the B-field components where
we use two entangled gases is shown in Fig. 6.5. If we compare the final
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Figure 6.5: Uncertainty of two B-field components as a function of time
using two atomic entangled gases and two probe beams. The uncer-
tainty at t = 5 ms is ∆By = ∆Bz = 8.221× 10−5 pT. We have used the
numerical values of Table 4.1 in our calculations.
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uncertainty of the B-field components then it is a factor of two lower than
in Fig. 6.3 where we did not entangle the atomic gases. That is what we
would expect because of the 1/Nat dependence. If we compare with Fig. 4.3
where we only estimated one B-field-component but used the same number
of photons and atoms, then we get a

√
2 higher uncertainty when we estimate

both B-field components. The
√

2 comes from the 1/
√

Φ time dependence.
By using entangled gases we use all the atoms to obtain measurements of
both B-field components, but we only use half of the photon flux to estimate
each B-field component.

6.3 Measuring All Three Components of a Magnetic Field

For the estimation of all three components of a magnetic field, the situation
changes since a spin-polarized sample is not a probe for the field component
parallel with the spin. For the sequential probing one would thus measure
By and Bz as just described, but one would have to rotate the sample by 90◦

to determine the last component Bx, and the errors of such a rotation would
limit the precision. As an alternative approach, we can divide our atomic gas
and probe beam into three individual systems. This is done in section 6.3.1.
This procedure is similar to our attempts of estimating two B-field compo-
nents in section 6.2.3, and since this was not the most efficient way to estimate
two B-field components we do not expect it to be the most efficient approach
for three components either. In fact we know from the previous section that
we can obtain more precise measurements if we use two entangled gases
to estimate two of the components and a separate gas to estimate the third
component. We discuss this scheme in section 6.3.2. In section 6.3.3 we will
describe how we can obtain even more precise measurements by using six
entangled gases and three probe beams.

6.3.1 Three Separate Gases and Three Probe Beams

With the setup in Fig. 4.1 we are able to estimate one B-field component.
We now divide our atomic gas and probe beam into three separate systems
such that we have three systems similar to the one in Fig. 4.1 but where
the number of atoms and the photon flux is divided by three between the
systems. With suitable rotations of two of these systems we are then able
to obtain measurements of one B-field component on each system. We get
a result similar to the result in section 6.2.3 where we estimated two B-field
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Measuring All Three Components of a Magnetic Field

components using two separate systems. The uncertainty of the B-fields at
t = 5 ms are ∆Bx = ∆By = ∆Bz = 3.017× 10−4 pT. We observe that this
value is a factor of 3

√
3 larger than in Fig. 4.3 where we only estimated one

B-field component. This is as expected from the dependence of the number
of atoms and the photon flux.
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Figure 6.6: Uncertainty of three B-field components using three sep-
arate systems. The value at t = 5 ms is ∆Bx = ∆By = ∆Bz =
3.017× 10−4 pT. We have used the numerical values of Table 4.1 in
our calculations.

6.3.2 Two Entangled Gases and One Separate Gas

In the previous section we estimated all three components of a B-field using
three separate systems. A better attempt would be to reuse the result from
section 6.2.4, where we used two entangled gases to estimate two components
and then use a separate system for the last B-field component. If we want
equal variances on all B-field components then the three atomic gases and
three probe beams should not be of the same size. However, if we let the
three photon fluxes be equal and divide the atoms such that half of the atoms
are used for the separate system and 1/4 of the atoms is used for each of the
entangled gases, then we would get the same final variance of all three B-
field components. The uncertainty at t = 5 ms is ∆Bx = ∆By = ∆Bz =
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6. Magnetometry in Two and Three Dimensions

2.012× 10−4 pT in this situation as shown on Fig. 6.7. The uncertainty at large
t is thus a factor 2

√
3 greater than if we had only estimated one component.
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Figure 6.7: Uncertainty of three B-field components as a function of
time using one separate gas and two entangled gases. The value at
t = 5 ms is ∆Bx = ∆By = ∆Bz = 2.012× 10−4 pT. We have used the
numerical values of Table 4.1 in our calculations.

6.3.3 Six Entangled Gases and Three Probe Beams

In this section, we want to couple the B-field components to three commut-
ing atomic operators, involving as many atoms as possible. We do this by
using a better, but also more complicated, setup for estimating three B-field
components as shown in Fig. 6.8. In this setup we use six entangled gases
and we let three probe beams pass through four gases each. The gases are
polarized such that the following components are classical: 〈Jx1〉 = −〈Jx4〉,
〈Jy2〉 = −〈Jy5〉, and 〈Jz3〉 = −〈Jz6〉. The optical fields are linearly polarized
with macroscopic Stokes parameters 〈Sz1〉, 〈Sy2〉, and 〈Sx3〉. The Hamiltonian
for this system is given by
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1 2 3

4 5 6
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Figure 6.8: Setup to obtain measurements of all three components of a
magnetic field. To do this we use six entangled atomic gases and three
probe beams. Each probe beam passes through four atomic gases.

Hintτ
√

h̄〈Jx1〉 = µτ(Jx2 + Jx3 + Jx5 + Jx6)Bx

+ µτ(Jy1 + Jy3 + Jy4 + Jy6)By

+ µτ(Jz1 + Jz2 + Jz4 + Jz5)Bz

+ κτ(Jz2 − Jy3 − Jz5 + Jy6)S3

+ κτ(Jz1 − Jx3 − Jz4 + Jx6)S2

+ κτ(Jy1 − Jx2 − Jy4 + Jx5)S1.

(6.4)

The index on S depends on the propagation directions through the indi-
vidual gases. Terms like µτ Jx1 Bx, which couple the classical components of
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6. Magnetometry in Two and Three Dimensions

the atomic spins to the B-fields, are omitted from the interaction Hamilto-
nian as they do not contribute to the interactions to the same order, e.g.,
[Jy1 , µτ Jx1 Bx] = −iµτ h̄Jz1 Bx, the product of two small quantities. By using
this Hamiltonian we measure three commuting observables (Jz2 − Jy3 − Jz5 +
Jy6), (Jz1 − Jx3 − Jz4 + Jx6), and (Jy1 − Jx2 − Jy4 + Jx5) and from their commu-
tators with the Larmor term in Eq. (6.4), we see that they evolve in direct
proportion with the three B-field components.

The uncertainty of the B-field components is shown as a function of time
in Fig. 6.9. As we use 4/6 of the atoms and 1/3 of the photon flux to estimate
each B-field component, the value of the uncertainty at t = 5 ms is 3

√
3/2

as big as if we only estimated one B-field component and a factor of two
smaller than if we use three separate systems to estimate the three B-field
components.
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Figure 6.9: Uncertainty of three B-field components using six entangled
gases and three probe beams. The value at t = 5 ms is ∆Bx = ∆By =
∆Bz = 1.510× 10−4 pT. We have used the numerical values of Table 4.1
in our calculations.

6.4 Entanglement

To measure two or three B-field components most efficiently, we have shown
that we should use entangled gases. There exist different entanglement mea-
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sures which can be used to quantify the degree of entanglement. Here we
will use the Gaussian entanglement of formation (geof) [54].

The geof is calculated from the covariance matrix of the atoms γat. Every
time we apply the update formula, we may extract γat for a pair of gases
from our numerical procedure and up to local unitary operations this matrix
turns out to be of the form

γat =


n 0 kx 0
0 n 0 −kp
kx 0 n 0
0 −kp 0 n

 , (6.5)

where kx ≥ kp ≥ 0 (kx = kp in our case). n, kx, and kp are the quantities of
interest for the evaluation of the geof. The epr uncertainty is given by

∆ = min
(

1,
√

(n− kx)(n− kp)
)

(6.6)
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Figure 6.10: geof for two entangled gases corresponding to the case
considered in Sec. 6.2.4 where we used two entangled gases to estimate
two B-field components. We have used the numerical values of Table 4.1
in the calculations.
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and the geof is

E = c+(∆) log[c+(∆)]− c−(∆) log[c−(∆)], (6.7)

where c±(∆) ≡ 1
4 (∆−

1
2 ± ∆

1
2 )2.

The geof for the two gases used to measure two B-field components is
shown in Fig. 6.10.

For three B-field components we used six atomic gases, and we have cal-
culated the geof between different pairs of the gases. Figure 6.11 shows the
geof between two gases polarized in opposite directions, e.g., gas number 1

and 4. The geof between pairs like 1 and 2 is zero.
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Figure 6.11: The geof for two gases polarized in opposite directions
as considered in Fig. 6.8 where we estimated three B-field components
by using six entangled gases. We have used the numerical values of
Table 4.1.

Our setup with two entangled gases is quite equivalent to the one imple-
mented in recent entanglement experiments [39] except that the atomic sys-
tems are under the additional influence of an initially unknown B-field. This
slows down the initial rate of generation of entanglement, but as Var(B(t))
approaches zero, the entanglement grows without limits as long as absorp-
tion and atomic decay can be neglected [55]. In the case of six gases which are
probed in a non-symmetric way, some pairs show entanglement and some do
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not. This can be understood by identification of operators that do not couple
to the probe fields. The convergence of the entanglement between oppositely
polarized gases toward a constant value is also observed without coupling to
a B-field, and it is due to the incompleteness of the measurements on the pair
by fields that also couple to other pairs of gases. In symmetric setups with
multiple Gaussian variables, the theoretical maximum of pairwise entangle-
ment between systems also has an upper limit, reflecting the impossibility
for a quantum system to be maximally entangled with several other quan-
tum systems at the same time [56, 57].

6.5 Conclusion

We have considered how to estimate a vector magnetic field using a Gaus-
sian description of the variables describing the system. To estimate more
than one B-field component it is fruitful to use pairwise entangled separate
gases. In other applications, e.g. teleportation, shared entanglement over
some distance is a useful resource too. We showed that entanglement can be
a useful local resource to improve the accuracy in measurements and param-
eter estimation. We note that our protocol for the estimation of two B-field
components using two optical probe beams and two entangled gases is ex-
perimentally very feasible. Essentially, it would require a combination of the
magnetometry setup of Ref. [13] and the entanglement setup of Ref. [39].

75





Seven

Time-Dependent Magnetometry

We present a theoretical procedure of the ability to estimate a magnetic
field that fluctuates according to an Ornstein-Uhlenbeck process. Our
analysis is based on a Gaussian state description of the atoms and the
probing field, and it presents the estimator of the field and a measure of
its uncertainty which coincides in the appropriate limit with the achieve-
ments for a static field described in chapter 4. We show by simulations
that the estimator for the current value of the B-field systematically lags
behind the actual value of the field, and we suggest a more complete
theory, where the measured values at any time are used to update and
improve both the estimate of the current value and the estimate of earlier
values of the B-field. This chapter is based on paper [IV].
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7.1 Introduction

In this chapter we generalize our theory of estimating weak magnetic fields
to time-dependent B-fields. Time dependent fields were recently studied ex-
perimentally [11], and we shall generalize that analysis and show that further
improvements of the estimate of the field at a given time is possible by taking
into account the detailed detection record at both earlier and later times. As
discussed in chapter 3 Gaussian states are fully characterized by their mean
value vector and covariance matrix, but so far we have only used the covari-
ance matrix. When we investigate time-dependent B-fields it is necessary to
look at the mean value vector too. We are able to give exact expressions for
the probability distribution of the probed magnetic field, i.e., our result is
neither too weak nor too strong (no procedure exists by which further infor-
mation can be extracted from the available data, and the actual value must
agree with our estimate within the probability distribution).

7.2 Gaussian State Formalism

7.2.1 Known Magnetic Field

In this section we shall assume a magnetic field B(t) with an explicitly given
time dependence. This analysis will be needed, when we proceed to simulate
how an unknown field is estimated, since it is the actual realization of the
field, that drives the atomic dynamics. The current section thus accounts for
the “information available to the theorist”, whereas the next section will deal
with the “information available to the experimentalist” who only have access
to the optical detection record and not to the actual value of the B-field.

We place a spin-polarized atomic gas in the B-field and probe it contin-
uously by the polarized light beam like we did when we estimated a con-
stant B-field. The Gaussian probability distribution (Wigner function) of the
atomic variables and of the light pulse prior to the interaction evolves into a
new Gaussian state, and the detection of the polarization rotation, which is
a measurement of the field observable xph leads to an update of the atomic
state, but it retains the Gaussian form [22]. This means that we can describe
the atomic state by the mean values and by the covariance matrix which fully
characterize a Gaussian state, and we shall now describe the time evolution
of the mean values and the covariances of the atomic state due to interactions
and measurements.
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First we define a vector of variables (operators) y = (xat, pat, xph, pph)T ,
with the corresponding vector of mean values m = 〈y〉 and with the covari-
ance matrix γ where γij = 2Re〈(yi − 〈yi〉)(yj − 〈yj〉)〉. Because we assume
that the B-field is known we do not include it in y. Instead we include it
explicitly in the update formulas. Our discussion of the Gaussian state de-
scription of a spin polarized sample and the linearly polarized light translates
into the specification of the initial values

m = 0, (7.1)
γ = 14×4, (7.2)

and the update formula due to interactions during a time interval τ

m 7→ Sm + v, (7.3)

γ 7→ SγST , (7.4)

where

S =


1 0 0 κτ

0 1 0 0
0 κτ 1 0
0 0 0 1

 (7.5)

and

v = (0,−µτ B(t), 0, 0)T . (7.6)

When we perform a homodyne measurement we write

γ =
(

Aγ Cγ

CT
γ Bγ

)
, (7.7)

m = (mA, mB), (7.8)

with Aγ the covariance matrix for the atomic variables, y1 = (xat, pat)T , Bγ

the covariance matrix for the field variables, y2 = (xph, pph)T , and Cγ the
correlation matrix between y1 and yT

2 . When a measurement of the variable
xph is performed, the outcome takes on a random value, given by the Gaus-
sian probability distribution. For a short segment of light, the mean value of
xph is m3 = κτm2, and the variance is 1/2 (the incident field variance is only
infinitesimally modified by the atoms). We let xmeas be the value we obtain
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7. Time-Dependent Magnetometry

when we measure xph. The measurement of xph collapses the field state and
transforms the atomic component according to

Aγ 7→ Aγ −Cγ(πBγπ)−CT
γ , (7.9)

mA 7→ mA + Cγ(πBγπ)−((xmeas −m3), 0)T , (7.10)
Bγ 7→ 12×2, (7.11)
Cγ 7→ 0, (7.12)
mB 7→ 0, (7.13)

where π = diag(1, 0) and (. . . )− denotes the Moore-Penrose pseudo-inverse.
To the lowest, relevant order, i.e., first order in τ, (πBγπ)− = diag(1, 0).
Equations (7.11), (7.12), and (7.13) “refresh” the atom and field variables cor-
responding to the subsequent light segment which has no correlations with
the atoms prior to the interaction. Note that the quantity (xmeas − m3) is a
random variable with vanishing mean value and variance 1/2, and since Cγ

scales as
√

τ, the measurement induced, random displacement of the mean
values (7.10) can also be expressed in terms of a Wiener increment with zero
mean value and variance τ, cf. [10, 11].

Before proceeding to the interaction between the atoms and an unknown
magnetic field, we note that the dynamics is of quantum non-demolition type
(qnd), i.e., it permits a detection of the atomic variable pat without changing
this observable. Such a detection (carried out when the field variable xph is
read out after the atom-light interaction), in effect leads to squeezing of the
pat component of the atomic spin around a random value, which is selected
by the random outcome of the measurement process and by the determinis-
tic Larmor rotation. Of course a single, infinitesimal time step as in Eq. (7.4)
leads only to an infinitesimal squeezing, but as the evolution proceeds con-
tinuously in time it leads to a monotonic reduction of the variance of the
atomic spin component.

7.2.2 Estimation of an Unknown Time Dependent Magnetic Field

As discussed in chapter 4, the B-field causes the Larmor precession (4.7). By
probing the value of pat, we acquire information about the magnetic field. In
section 4.4, we found that a constant magnetic field is effectively probed with
a time dependent variance on the estimate given by

∆B(t)2 =
∆B2

0(1 + κ2t)
1 + κ2t + 2

3 κ2µ2(∆B0)2t3 + 1
6 κ4µ2(∆B0)2t4

, (7.14)
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with ∆B2
0 representing our prior knowledge of the field. In the limit of κ2t �

1, we have ∆B(t)2 ' 6/(κ2µ2t3) which is independent of the prior knowledge
of the B-field and which reflects a more rapid reduction with time of the
variance than expected from a conventional statistical argument. This is due
to the atomic squeezing, as it progressively makes the system more and more
sensitive to the magnetic field perturbation.

In the following, we shall generalize the analysis to the case of time de-
pendent B-fields. A convenient model for a random field is a damped diffu-
sion (Ornstein-Uhlenbeck) process [58], governed by the stochastic differen-
tial equation

dB(t) = −γbB(t)dt +
√

σbdWb, (7.15)

where the Wiener increment dWb has a Gaussian distribution with mean zero
and variance dt. The bandwidth of the field is determined by the frequency
γb alone. Our task is to expose atoms to a realization of this process and
to use the polarization measurements to construct an estimate for the actual
current value of the field.

The Ornstein-Uhlenbeck process can be simulated on a computer, but we
can also make statistical predictions, e.g., the steady state mean vanishes and
the variance is

Varst(B) =
σb

2γb
. (7.16)

If we estimate the field in the laboratory at time tL to be BtL with a variance
VtL on the estimate, then our best estimate for the value at a future time t > tL
takes the value

B(t) = BtL exp(−γb(t− tL)) (7.17)
with a variance

Vt = VtL e−2γb(t−tL) + Varst(B)(1− e−2γb(t−tL)). (7.18)

The Ornstein-Uhlenbeck process can be very slow, in which case the field
retains its random value almost constantly over long times, and we then
expect to recover the result in (7.14) for the estimation of a constant field,
because the accumulated photodetection record over time carries informa-
tion about the time dependent field, which is known to vary very little. If
the Ornstein-Uhlenbeck process is very fast, the accumulated photodetection
record until the present time t gives only little information about the present
value. Note that by scaling γb and σb by the same factor, the variance (7.16)
is unchanged, but the process changes from slow to rapid fluctuations.
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Our theoretical description of the estimation process deals with a joint
Gaussian distribution for the quantum variables and the classical magnetic
field. As in chapter 4 we will formally treat the B-field as the first component
in our vector of five Gaussian variables ỹ = (B, xat, pat, xph, pph), where the
tilde is used to distinguish these variables from those in the previous section
describing the situation where the B-field is known. Again the Gaussian state
is characterized by its mean value vector m̃ = 〈ỹ〉 and its covariance matrix
γ̃ where γ̃ij = 2Re〈(ỹi − 〈ỹi〉)(ỹj − 〈ỹj〉)〉.

Note that although, e.g., xat is the same operator in this and the previous
section, its Gaussian state mean value and variance are not the same, because
the Gaussian state is the probability distribution assigned by the observer
given his or her acquired knowledge about the system. In the previous sec-
tion we determined this probability distribution conditioned on full knowl-
edge of the time dependent B-field and the photodetection record, whereas in
the current section, only “the experimentalist’s” knowledge of the detection
record is assumed.

We will now write down the update formulas for m̃ and γ̃ due to the Lar-
mor rotation, the atom-light interaction, the random outcomes of the probing
process, and the Ornstein-Uhlenbeck process. We will then at any time obtain
a mean value m̃1 and a variance γ̃11/2 for the B-field.

The initial values are

m̃ = 0, (7.19)
γ0 = diag(2 Var(B0), 1, 1, 1, 1). (7.20)

Due to the interaction between the B-field and the atoms and between the
atoms and the photons we have

m̃ 7→ S1m̃, (7.21)

γ̃ 7→ S1γ̃ST
1 , (7.22)

where

S1 =


1 0 0 0 0
0 1 0 0 κτ

−µτ 0 1 0 0
0 0 κτ 1 0
0 0 0 0 1

 . (7.23)

In this section the B-field is one of the variables, and hence the equation (7.21)
is linear unlike the affine transformation (7.3). The transformations due to the
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Ornstein-Uhlenbeck process are

m̃1 7→ m̃1(1− γbτ), (7.24)
γ̃ 7→ S2γ̃S2 + L, (7.25)

where S2 = diag(1− γbτ, 0, 0, 0, 0) and L = diag(σbτ, 0, 0, 0, 0).
To handle the measurement on x̃ph we write the covariance matrix and

the mean value vector as

γ̃ =

(
Ãγ C̃γ

C̃T
γ B̃γ

)
, (7.26)

m̃ = (m̃A, m̃B)T , (7.27)

where Ãγ is the covariance matrix for B-field and atoms, ỹ1 = (B, x̃at, p̃at)T ,
B̃γ the covariance matrix for the photons, ỹ2 = (x̃ph, p̃ph)T , and C̃γ the corre-
lation matrix for ỹ1 and ỹT

2 . The measurement of x̃ph then transforms these
matrices according to

Ãγ 7→ Ãγ − C̃γ(πB̃γπ)−C̃T
γ , (7.28)

B̃γ 7→ 12×2, (7.29)

C̃γ 7→ 0, (7.30)

m̃A 7→ m̃A + C̃γ(πB̃γπ)−(xmeas − m̃4, 0)T , (7.31)
m̃B 7→ 0. (7.32)

These equations fully describe the conditioned and the deterministic evo-
lution of the multi-variable Gaussian distribution, and in particular we get
access to the estimator for the B-field in the form of its mean and the cor-
responding covariance matrix element. The input to the estimation protocol
is the constant parameters of the problem (κ, µ, γb, σb) and the outcome of
the photodetection (xmeas), which will drive the mean values, and hence the
estimator, to a non-trivial result, cf. Eq. (7.31). We note that whereas the es-
timator depends on the actual measurement outcome, the covariance matrix
evolves in an entirely deterministic manner, and we can hence theoretically
predict the magnitude of the error as it was also done in [11].

We want to simulate the protocol with a given realization of the noisy
field, and to do this we have to combine the theories of this and the previous
section.

83



7. Time-Dependent Magnetometry

• We simulate the B-field by using the Ornstein-Uhlenbeck process in
Eq. (7.15).

• We can then simulate the measurements xmeas by using this B-field as
input in the theory described in the previous section.

• Then we use the simulated measurements xmeas as input in the theory
in this section, and in this way we can simulate the mean value of B.

• This mean value of B is our estimate of B and we can now compare it
to the original B-field simulation.

In the simulation it is the actual field B(t) that acts on the atoms and hence
leads to the probability distribution for the photodetection record, and the
measured quantum field variable xph has the mean value m3 = κτm2, given
by the expressions of the previous section. Hence the measurement outcome
can be written as κτm2 + χ where χ is uncorrelated with its value at previous
detection times, and it has a vanishing mean and a variance of 1/2. We are
thus effectively communicating the value of the simulated B-field through
the use of the “theorist’s” estimator of the atomic state in the simulation of
measurement outcomes. Assuming a random measurement outcome with
the statistics described, we update the mean value vector and covariance ma-
trix of the previous subsection, and we use the same simulated measurement
outcome in the update formula (7.31). The simulated measurement outcome
may deviate from the value m̃4 currently expected by the “experimentalist”
both because of the noisy contribution and because the mean is given by its
true value and not his or her estimate. The latter is responsible for driving the
B-field estimate towards the actual realization in our numerical simulations.

7.3 Results

We now have a complete theory which, given the detection record, provides
the estimator for the time dependent B-field and its variance. In practice,
the experiment should be run, and the analysis should be applied on the full
detection record, either simultaneously with the experiment or afterwards.
Some calculations are necessary since the B-field estimator at any time in-
volves knowledge of the full vector of mean values and the covariance matrix.
The covariance matrix, and in particular the variance of the B-field estimate,
evolves deterministically with time. We can in fact solve the equations for the
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covariance matrix analytically, and in the long time limit we find the steady
state variance on our B-field estimate:

Var(B) =
1

4κ2µ2

(√
γ2

b + 2µ
√

σbκ − γb

)2√
γ2

b + 2µ
√

σbκ. (7.33)
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Figure 7.1: Uncertainty of the B-field as a function of time. We have
used the numerical values of Table 4.1 in our calculations. The red
line is the analytical result for a constant B-field. The black lines are
for time-dependent B-fields with the following values (from above)
(γb, σb) = (105 s−1, 2× 105 pT2/s), (γb, σb) = (104 s−1, 2× 104 pT2/s),
(γb, σb) = (103 s−1, 2× 103 pT2/s), (γb, σb) = (102 s−1, 2× 102 pT2/s),
and (γb, σb) = (101 s−1, 2× 101 pT2/s). For small values of γB the black
curves approach the constant B-field result as expected.

When the Ornstein-Uhlenbeck process is slow, early detection events and
estimates provide already an estimate for future values of the field, cf. (7.18),
which is further refined by the continued measurement record. It is also seen
from (7.18), that if the rate γb is high, the estimates quickly loose their sig-
nificance, and only probing for a short time before t is useful in the estimate
of B(t). In Fig. 7.1 we show how the variance of the B-field estimate starts
with the prior steady state value (7.16) before any probing takes place and
evolves to the steady state value given by (7.33). In the figure we assume
the same steady state value for the B-field fluctuations in all curves, but with
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7. Time-Dependent Magnetometry

different values of the rate of fluctuations γb. For comparison we also show
the analytical result (7.14) for a constant, unknown field with the same prior
uncertainty. This curve converges to zero, but it is clearly seen to follow the
curves with finite γb on short time scales (determined by γb).
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Figure 7.2: Time dependent value of the actual, simulated B-field (red
line) and the estimate based on a simulated detection record (black
line). The estimate is systematically lacking behind the actual B-field.
The atomic parameters are given in Table 4.1, and the B-field is charac-
terized by γb = 103 s−1 and σb = 2× 103 pT2/s.

In Fig. 7.2 we show the result of a realization of the Ornstein-Uhlenbeck
process. The figure shows the actual process as a red line and the estimator
as a black line for a typical time window. We observe that the estimator
tracks the gross structure of the dependence very well, but smaller transients
are not reproduced. Taking a second look at the figure, we also observe that
the estimate is systematically lacking behind the true realization of the field.
This is not the least surprising, as the estimate makes explicit use of all past
measurements to predict the current value. In particular, if no measurement
results are provided, the estimate for the value is simply obtained from past
values according to Eq. (7.15). This should, however, prompt attempts to
make an even better estimate for the field using not only the detection record
until the instant of interest, but also the later detection events. We recall that
we are actually probing the atomic spin state, and the Larmor precession due
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to the B-field may well be detected also after it took place. In the following
sections we will discuss different methods to improve the estimate of the
B-field.
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Figure 7.3: The black curve shows the error of the B-field estimate (7.34)
as a function of a variable translation of the two curves in Fig. 7.2
with respect to each other. As it is seen the error has a minimum at
around 0.02 ms. The horizontal red line shows the error obtained from
a weighted average of delayed estimates, see text and Eq. (7.36). The
atomic parameters are given in Table 4.1, and the B-field is character-
ized by γb = 103 s−1 and σb = 2× 103 pT2/s.

7.3.1 Fixed Delay

As already noted the estimate of the B-field lacks systematically behind the
simulated field. A simple way to improve the estimate is therefore to displace
the estimate in time. To justify this increased effort, we have made a very
simple transformation of the data, consisting in a temporal displacement of
the two curves in Fig. 7.2, so that we compare the current estimator m̃1(t)
obtained by our theory with earlier values of the field B(t − T). Figure 7.3
shows the numerically calculated error of the estimate, averaged over a long
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7. Time-Dependent Magnetometry

detection record, plotted as a function of the delay T, and

Error2(T) =
1
t0

∫ t0+T

T
(m̃1(t)− B(t− T))2dt, (7.34)

We indeed see, that for a range of values of T the error is smaller than if we
do not shift the estimate. This means that we obtain a better estimate if we
assign our estimate to the value of the B-field a little earlier. In Fig. 7.4 we
have plotted the true realization of the B-field together with the estimated
value displaced in time, such that the above Error is minimal.
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Figure 7.4: Time dependent value of the actual, simulated B-field from
Fig. 7.2 (red line) and the estimate of B delayed in time with the optimal
delay T obtained from Fig. 7.3 (black line). The atomic parameters are
given in Table 4.1, and the B-field is characterized by γb = 103 s−1 and
σb = 2× 103 pT2/s.

7.3.2 Weighted Average of Delays

A slightly more elaborate procedure to improve the estimate obtained from
the above procedure is obtained by assuming not just a simple delay but a
temporal convolution of the estimators,

Best
opt(t) =

∫ ∞

−∞
a(t− t′)m̃1(t′)dt′. (7.35)
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Figure 7.5: Time dependent value of the actual, simulated B-field from
Fig. 7.2 (red line) and the estimate of B folded with Eq. (7.35) where the
coefficients ai are shown in Fig. 7.6 (black line). The atomic parameters
are given in Table 4.1, and the B-field is characterized by γb = 103 s−1

and σb = 2× 103 pT2/s.

Numerically, we have identified the optimum delay distribution by minimiz-
ing the (squared) error

1
t0

∫ t0+T

T

(
∑

i
aim̃1(t− iτ)− B(t)

)2
dt, (7.36)

which turns out to be a linear algebra problem for the coefficients ai. Run-
ning a series of simulations, we find the temporal variation of the delay dis-
tribution plotted in Fig. 7.6, peaking, as expected, around the optimum fixed
delay found in the previous section in Fig. 7.3. The error obtained this way
is smaller than by use of any fixed delay, as indicated by the horizontal red
line in Fig. 7.3 which lies below the black line. In Fig. 7.5 we have plotted the
true realization of the B-field together with the estimated value folded with
the above function.
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Figure 7.6: Time dependence of optimal weight factors ai in Eq. (7.36),
favoring contributions with a finite delay around 0.02 ms as suggested
by Fig. 7.3. The atomic parameters are given in Table 4.1, and the B-field
is characterized by γb = 103 s−1 and σb = 2× 103 pT2/s.

7.3.3 Gaussian Theory of Hindsight

Both the fixed delay and the weighted average of delays bring promises for
improved sensitivity of magnetometers, if one can wait for the estimate until
(a short time) after the action of the field. Both procedures, however, suffer
from their ad hoc character, and in particular from the fact that the optimum
delay or delay distribution are not theoretically available, unless one accepts
to use simulations as we did here as guideline. We shall now present the
correct theory, which gives the optimum estimate without any ad hoc proce-
dures and a tight bound on the error.

The current estimate of the B-field is given by a Gaussian probability
distribution, and so is the estimate of the value of the B-field at all points
in the past. As measurements on the atoms proceed, we may therefore keep
improving also our past estimate. We hence treat not only the current value
but also past values of the B-field as Gaussian variables together with the
atom and field variables. To update the estimate at an instant T in the past,
we need to keep track of the entire interval from t − T to the present time
t, and we extend our Gaussian state formalism by replacing ỹ by a whole

90



Results

vector of values, representing the unknown B-field at discrete times spanning
an interval from t− T until t: y = (BN , BN−1, . . . , B1, xat, pat, xph, pph)T where
Bi = B(t− (i− 1)τ). Since we are dealing with the values in the past, they are
not evolving randomly due to the Ornstein-Uhlenbeck process, but inherit
their value as time proceeds and the elements in the vector of mean values
and the covariance matrix are simply “pushed towards the past”. In each
iteration we have to insert a new B-field and remove the oldest B-field. For y
we do like this

y 7→



y2
...

yN
yN

yN+1
...

yN+4


(7.37)

and similarly for the mean value vector m. The covariance matrix is updated
like this

γ 7→



γ2,2 . . . γ2,N γ2,N γ2,N+1 . . . γ2,N+4
...

. . .
...

...
...

. . .
...

γN,2 . . . γN,N γN,N γN,N+1 . . . γN,N+4
γN,2 . . . γN,N γN,N γN,N+1 . . . γN,N+4

γN+1,2 . . . γN+1,N γN+1,N γN+1,N+1 . . . γN+1,N+4
...

. . .
...

...
...

. . .
...

γN+4,2 . . . γN+4,N γN+4,N γN+4,N+1 . . . γN+4,N+4


.

(7.38)

Only the current value of B(t) is given by the stochastic process. The transfor-
mation matrix due to the Larmor and Faraday rotation, S1, and the matrices
due to the Ornstein-Uhlenbeck process, S2 and L, should be extended

S1,new =
(
1N−1×N−1 0

0 S1

)
, (7.39)

where S1 is the matrix from Eq. (7.23). S2 and L should be updated the same
way, except that for L the identity matrix should be replaced by zeros. The
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Figure 7.7: Time dependent value of the actual, simulated B-field (red
line) and the estimate based on a simulated detection record available
0.1 ms after the action of the field (black line). The atomic parameters
are given in Table 4.1, and the B-field is characterized by γb = 103 s−1

and σb = 2× 103 pT2/s.

atomic system is correlated with both the current and the previous values of
the field as witnessed by non-vanishing elements in the extended covariance
matrix, and hence the updating due to measurements on the atoms also in-
fluence the variance of the B-field estimate in the past, c.f. the appropriate
generalization of Eq. (7.31). We still measure on xph but now it is not the 4th

entry but instead the (N + 3)th entry. Now, there is nothing ad hoc about
the procedure. At any time, we have an estimator for the value of the field
over a finite interval looking backwards in time. We also have the variance of
these values, which is a decreasing function of the time difference, approach-
ing a constant, for values so long time ago, that their action on the atoms
is no longer discernible, and hence no further updating takes place due to
Eq. (7.31).

Figure 7.7 shows a comparison of the actual, simulated field with our
Gaussian estimator, available 0.1 ms after the action of the B-field on the
atoms. So at a given time we both get an estimate of the current value of
the B-field and improve the estimate of the B-field values for the previous
0.1 ms.
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Figure 7.8: Time dependence of the variance of our estimate of the
time dependent field B-field around the current time tL in the lab-
oratory. The atomic parameters are given in Table 4.1, and the B-
field is characterized by these different values (from above) (γb, σb) =
(104 s−1, 2× 104 pT2/s), (γb, σb) = (103 s−1, 2× 103 pT2/s), (γb, σb) =
(102 s−1, 2× 102 pT2/s), and (γb, σb) = (101 s−1, 2× 101 pT2/s). For
later times we have to guess the value from the properties of the
Ornstein-Uhlenbeck process (7.18), at the current time we have the
value (7.33), and for earlier times we get the improvement given by
the solution of the extended Gaussian state updating.

In Fig. 7.8 the variance of the estimate of the B(t)-field is plotted at a given
time tL in the laboratory after a long measurement time, so transients in the
atomic dynamics have died out. Results are shown for different values of γb
but a constant ratio between γb and σb. The estimate for B at the laboratory
time tL is based on measurements that have registered the action of the field
at all previous times and takes the value given by (7.33). For future times
t > tL, we have to use the current estimate and extend it by our knowledge
of the Ornstein-Uhlenbeck process, i.e. we use the variance VtL from Eq. (7.18)
in Fig. 7.8. The curves show that it is easier to guess the present value than
future ones, and that future values are particularly hard to guess for a rapidly
fluctuating process. Finally, the curves also explore the range of t < tL, where
we estimate past values of the field, and we observe the benefit of hindsight.
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Figure 7.9: The figure shows the variance of estimates for earlier
times normalized to the variance at t = tL = 4 ms, see text. The
atomic parameters are given in Table 4.1, and the B-field is charac-
terized by these different values (from below for t < 0) (γb, σb) =
(104 s−1, 2× 104 pT2/s), (γb, σb) = (103 s−1, 2× 103 pT2/s), (γb, σb) =
(102 s−1, 2× 102 pT2/s), and (γb, σb) = (101 s−1, 2× 101 pT2/s).

We see in figure 7.9, where the variance is plotted relative to its value at
t = tL, that quite independently of the time constant of the fluctuations, if we
can only wait long enough, we find a significant improvement on the variance
compared to the equal time estimate, considered in previous theories [11].
This improvement is a function of the physical coupling parameters, and the
present study suggests a careful analysis of the optimum probing strategy,
including the possibility of time dependent field strengths and detunings and
taking into account also atomic decay processes.

7.4 Conclusion

We have presented a formalism that provides the correct estimate of a time
dependent B-field which is known to fluctuate randomly according to an
Ornstein-Uhlenbeck process. The estimate exhausts the measurement data
and makes the tightest possible conclusions from the photodetection record.
It is “correct” in the sense that any better estimate necessarily requires further
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information, which could either be in the form of prior information about the
field or the results of further measurements on the system. Our ability at time
t to estimate B(t) connects in a natural manner to previous results for the es-
timation of static fields, and it is comparable with the results of the analysis
of time dependent fields in [11]. Simulations show that this theory actually
provides a better estimate of the value in the recent past (or, instrumentally, if
you need to estimate the field at time t, you should use the formally obtained
estimate at time t + T for some suitable T). Our formalism naturally gener-
alizes to describe also a scenario, where previous estimates are updated by
current measurements, and this provides an essential improvement for mag-
netometers as documented in this chapter.
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Eight

Conclusion and Outlook

In this last chapter, the main results of the thesis will be summarized
and perspectives for extension of this work will be given.
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8.1 Summary and Perspectives

In chapter 2 and 3 we have considered squeezed light generated in an opti-
cal parametric oscillator. By using a Gaussian state description we have de-
scribed squeezing of light inside the cavity both with and without homodyne
measurements of the output field. We have also described the squeezing of
the output field and shown that the output field is only squeezed if we look
for long enough times. Furthermore, in chapter 5 we have used the squeezed
light as probe beams to improve an atomic magnetometer.

The method described in this thesis is fully general, and further studies
can be carried out in a similar way on other proposals involving squeezed
light. The theory is readily generalized to incorporate more atomic systems,
more field modes, and non-degenerate opos. Moreover we showed that finite
detection bandwidth can be modeled by the addition of auxiliary modes. Fi-
nite bandwidth of the light sources and of the detection system may also play
non-trivial roles in conjunction with atomic decay and decoherence which set
an upper limit to the degree of entanglement obtained in gases [55].

We also note that squeezed light has been proposed as an ingredient
in various quantum information protocols, such as teleportation [59], as a
source of heralded single photons [60, 61], and as a resource in continuous
variable quantum computing and error correction [62]. In many of these
protocols, an elementary analysis is given in terms of single mode fields.
However, a full time and frequency dependent analysis would be more ap-
propriate. The Gaussian theory which we have used works for Gaussian
states, but some protocols like heralded single photons [60, 61], generation
of Schrödinger Cats states, and some quantum information protocols such as
distillation of entangled states [21, 22, 63] involves non-Gaussian states. It is
therefore important to be able to include non-Gaussian states in the theory
too. If only the last step includes non-Gaussian states, then one could use the
Gaussian theory until the last step and then “drop” the Gaussian theory.

In chapter 4 we used the Gaussian theory to estimate magnetic fields,
and for constant B-fields we got below the shotnoise limit. The fact that the
Gaussian state is fully characterized in terms of its expectation value vec-
tor and covariance matrix means that the theory is easy to formulate and to
evaluate. It is an outstanding advantage of the Gaussian state description
that explicit update formulas exist for, e.g., the interactions in a system, ho-
modyne detection, and noise due to stimulated emission of the atoms and
photon absorption.

Another kind of noise process is if the atomic gas is optically thick such
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that the probability for photon absorption is larger than, say, a few percent.
In this case we get an inhomogeneous light-atom coupling. As shown in
Ref. [23] it is possible to reformulate the theory presented in this thesis by
slicing the atomic gas into pieces, each having only a small photon absorption
probability. This is important in, e.g., quantum memory for light experiments
where different protocols rely on multiple passes of the light beam through
the atomic sample [53, 64–67]. Due to absorption the photon flux is smaller
if the beam has passed through the gas earlier and this can be accounted for
in the Gaussian theory.

In chapter 6 we have shown that if we want to estimate two or three
components of a B-field, it is most efficient to use pairwise entangled sep-
arate gases. Pairwise entangled gassed are used in other applications like
teleportation. It could be very interesting to describe teleportation using the
Gaussian description. In a broader perspective, the work presented in this
thesis brings out the virtues of the Gaussian state formalism and this is use-
ful both in the detailed characterization of entanglement (see, e.g., Refs. [19–
22] and references therein), and in the practical description of quantum sys-
tems [8, 23, 53].

Finally, in chapter 7 we analyzed fluctuating B-fields and showed that we
obtain a better estimate if the measurement results at any time are used to
improve the estimates at earlier times.

We have not made a complete survey of the optimal performance of the
magnetometer as a function of all physical parameters. At this stage, it seems
futile to vary all parameters without inclusion, in particular, of the atomic
decay, which will either restrict the magnetometers to finite time analyses or
which will have to be compensated by a continuous optical re-pumping of the
atoms. As pointed out in [11], the field estimation can be made robust to im-
precise information about some of the physical parameters, in particular the
number of atoms which enters the atom-light interaction strength. Instead
of just calculating the field, one can apply, in a feedback setup, a compensat-
ing field which should freeze the Larmor precession, independently of the
number of atoms, and the field estimate is now given by this compensating
field [68, 69]. It is also possible to include a time dependent feedback field
in our equations, and hence to simulate the performance of any feedback
strategy and its robustness against fluctuations in physical parameters. An-
other possible important extension of the theory deals with the assumption
of the Ornstein-Uhlenbeck process with given parameters. The parameters
enter explicitly in our estimation procedure, and if these parameters are not
known, or if they are functions of time, e.g., as in the case of cardiography on
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a beating heart, more refined theory will be needed. At this point, we recall,
that the Ornstein-Uhlenbeck model represents our prior knowledge about
the field fluctuations. A conservative high estimate on the noise fluctuations
will hence give a similar conservative estimate on the field, which might
be improved if better limits were known. A theoretical investigation of this
problem could for example simulate the estimation of a noisy field, assuming
a different value of the parameters than those applied in the synthesis of the
field, and then investigate numerically the difference between the variance
on the estimate obtained from the theory and the actual statistical agreement
between the estimate and the field.
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Analytical Result
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A. Analytical Result

In chapter 5 we showed how to use squeezed light to improve an atomic
magnetometer. In the case where we used squeezed light generated in an opo

the analytical result is very lengthy, so we present the result in this appendix
(the result is continued on the next page).

Var B =
{[

κ2Γ(Γ + 4g)2(Γ− 4g)t + Γ(Γ− 4g)3 − 16κ2gΓ(3Γ + 4g)
]

(A.1)

+ 64κ2gΓ(Γ + 4g)e(−Γ/2+2g)t

+
[
−4κ2g(Γ + 4g)2(Γ− 4g)t

− 4g(Γ− 4g)3 − 16κ2Γg(Γ + 12g)
]
e(−Γ+4g)t

}
×6∆B2

0(Γ− 4g)4
/

{[
∆B2

0µ2κ4Γ(Γ + 4g)4(Γ− 4g)3t4

+ 4∆B2
0µ2κ2Γ(Γ− 4g)2(Γ + 4g)2

(
(Γ− 4g)3 − 16κ2g(3Γ− 4g)

)
t3

+ 192∆B2
0µ2κ2gΓ(Γ− 4g)(Γ + 4g)

×
(

2κ2(Γ2 + 24Γg + 16g2)− (Γ− 4g)3
)

t2

+ 6κ2Γ
(
(Γ− 4g)5(Γ + 4g)2 + 128∆B2

0µ2g

×
(

κ2(Γ3 − 12Γ2g− 208Γg2 − 64g3) + 4g(Γ− 4g)3
))

t

+ 6Γ
(
(Γ− 4g)7 − 16κ2g(Γ− 4g)4(3Γ + 4g)

+ 128∆B2
0µ2κ2g(Γ− 4g)3 − 8192∆B2

0µ2κ4g2Γ
)]

+
[
−128∆B2

0µ2κ4gΓ(Γ− 4g)2(Γ + 4g)3t3

− 768∆B2
0µ2κ4gΓ(Γ− 4g)2(Γ + 4g)2t2

+ 49152∆B2
0µ2κ4g2Γ2(Γ + 4g)t

+ 384κ2gΓ
(

256∆B2
0µ2κ2γΓ + (Γ− 4g)4(Γ + 4g)

)]
× e(−Γ/2+2g)t

102



+
[
−4∆B2

0µ2κ4g(Γ− 4g)3(Γ + 4g)4t4

+ 16∆B2
0µ2κ2g(Γ− 4g)2(Γ + 4g)2

×
(
−4κ2Γ(Γ + 12g)− (Γ− 4g)3

)
t3

+ 192∆B2
0µ2κ2gΓ(Γ− 4g)(Γ + 4g)

×
(
−2κ2(Γ2 + 24Γg + 16g2)− (Γ− 4g)3

)
t2

+ 24κ2g
(
−32∆B2

0µ2κ2Γ(Γ3 + 52Γ2g + 48Γg2 − 64g3)

− 32∆B2
0µ2Γ2(Γ− 4g)3 − (Γ− 4g)5(Γ + 4g)2

)
t

+ 24g
(
−32∆B2

0µ2κ2Γ(Γ− 4g)3 − 2048∆B2
0µ2κ4gΓ2

− 4κ2Γ(Γ− 4g)4(Γ + 12g)− (Γ− 4g)7
)]

× e(−Γ+4g)t
}
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