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CHAPTER 1

Outline of the Thesis

The subject of this thesis is mainly the generation of entangled states between
macroscopicobjects and the quantum medanical understanding of the interac-
tion between polarized laser light and atomic ground state spins. The work is
primarily experimental but we also presen theoretical calculations.

Di®erert readersshould read this thesis di®ererlly. Somechapters are meart
as pedagogicalintroductions to the "eld, other chapters are very technical and
may in someoccasionsbe even clumsy! A generaland hopefully understandable
description of the work behind this thesisis of coursethe most important point.
But we adknowledgethe fact that youngerstudents or co-workersfollowing up on
the work may nd it useful to read about the detailed calculations and general
considerationswhich have required a lot of e®ort for the author of this thesis.

Chaps. 2 and 3 give the generalintroduction to the "eld. In Chap. 2 the
physical systemof polarized laserlight interacting with atomic ground state spins
is introduced. Chap. 3 is a broader review of the "eld of quantum optics and
puts our work into a generalcontext. These chapters should be relevant for all
readers. Chap. 4 introducesmany generalaspectsand techniquesrelated to the
experiments. This chapter is of course mainly for experimentalists but it also
gives a general characterization of our physical system which is relevant for all
readers. Chap. 5 derivesan e®ective Hamiltonian describing the light/matter
interactions and Chap. 6 statesthe equations of motion following this Hamil-
tonian. Thesetwo chapters are purely theoretical, the hard core experimentalist
may read the main results in Secs.6.2 and 6.3. In Chap. 7 we start to con-
sider experimental results and techniques in detail. This chapter is dewoted to
the magneto-optical resonancemethod for characterizing atomic ground state
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spins. These purely classical results are very useful and extensively used for
all other experiments of this thesis. Chap. 8 describestheoretical and experi-
mental investigation of the interaction betweenlight and atoms at the quantum
level. The results demonstrate that our theoretical understanding is correct to
a high degreeand that our physical systemsare feasible for implementation of
quantum information protocols. The purely theoretical Chap. 9 and the purely
experimental Chap. 10 deal with the generation of entangled states between
macroscopiccesiumgassamples. The results preseried in Sec.10.1 demonstrate
on demand creation of entangled states, this is the most important result of this
thesis. Chaps. 7, 8, and 10 presen experimertal results of increasingimportance
and are relevant for most readers. Chap. 9 is not only for the theoretically in-
terested reader, it also covers many practical considerations necessaryfor the
understanding of the entanglemert generation. Chap. 11 givesan impressionof
possiblefuture technological implementations of our researt for quantum com-
munication purposes. In Chap. 12 we summarize the thesis work and give an
outlook for the future.

The appendicesare in general technical. Apps. A and B deal with the
description of polarized light and atomic spins, respectively. App. C is more or
less\text book material” on the quantum mechanical description of light/matter
interactions. The emphasisis put on cortinuous description of light and matter.
The reasonfor writing this down is the fact that the author (who is an experi-
mertalist) found it dizcult to nd relevant referencesto text books and spernt a
huge amount of time on what may be really trivial for a theorist. It is the hope
that other readers nd this appendix useful. App. D singlesout results of spher-
ical tensor algebra directly applicable for the derivations in Chap. 5 and is only
relevant for the theoretically interested reader. App. E reviews a few results of
photo detection theory and connectstheseto our experiments (which deal with
polarization states of light). The main problem here is time ordering of light
creation and annihilation operators and turns out to be inelegart and clumsy.
This appendix is resened for readerswho really want to understand every detail
of the theoretical derivations in Chap. 8. App. F reviewsthe quadratic Zeeman
e®ectand is included in this thesis for completenessit is very useful for the un-
derstanding of magneto-optical resonancespectra preserted in Chap. 7. App. G
preserts a few technical aspects of Langevin forcesrequired for the theoretical
modeling of decaing spinsin Chap. 8.



CHAPTER 2

Atoms and Light as Interesting
Quantum Systems

In this sectionwe aim at explaining somegeneral properties of atoms and light
relevant for our experimerts. Both atoms and light can be described in the lan-
guageof quantum medanics, but from our perspective this becomesinteresting
when we can couple the atomic and light degreesof freedomto ead other in
order to exchangequantum information between the two. Atoms are massiwe
particles and therefore slow in the sensethat we experimentally can keepthem
at a well cortrolled location for a long time. This meansatoms are good for
storage of quantum information. On the cortrary, light is fast and is well suited
for transporting quantum information betweenatomic systemsor to various de-
tection systems. In the following sectionswe describe in generalterms how atoms
and light experimentally can play theseroles and we commert on the nature of
the interaction betweenlight and atoms.

2.1 The Atomic Ground State Spin

The experiments in this thesis are carried out using cesiumatoms. One reason
for this is the fact that lasersare available for relevant transitions, another is the
fact that the de nition of one secondrelies on the cesiumatom. This atom was
the preferred one when | joined the Quantum Optics Laboratory four yearsago
and motivating this choice is the availability of a tunable source of squeezedor
entangled light at atomic transitions in cesium (we usethis sourcein Chap. 8).
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Figure 2.1: (a) The 6S;-, ground state of cesiumis split into two hyper ne states
with F = 3and F = 4. If atoms are left alone the spin state will populate all
me -sublewels evenly as depicted by small circles. (b) In the experimental work
in this thesis we are only interested in the atoms in the F = 4 state and it is
possibleto put (almost) all atoms into the outermost state with mg = 4 (with
the x-axis as direction of quartization). (c) The individual spins sum up to a
macroscopicspin along the x-axis, the transverse spin componerts J\y and J,
have quantum uncertainties depicted by a gray disk, seeEq. (2.3). (d) The spin
is often shavn from above sinceonly the transversecomponerts have interesting
quantum properties. The new variables X and P are dened in Eq. (2.4). It
is in principle possibleto create non-classicalstates, e.g. a squeezedstated as
shaown in (e).

The ground statesof cesiumare characterizedby the outermost electronwhich
is in the 6S,-, state, i.e. the orbital angular momertum L is zero. The electron
spin S and thus the total electronic angular momertum J has quantum number
S = J = 1=2. The nuclear spin | of cesium-133has| = 7=2, and the coupling
betweenthe nucleusand the electron givesrise to the total angular momertum
F = | + J with quantum numbersF = 3 and F = 4, seeFig. 2.1(a).

It is indeed the total angular momertum F which interests us in this thesis
sinceF and the magnetic quantum numbers mg de ne the energy levels of the
ground states. Furthermore, we will often restrict ourselvesto one hyper ne
level, F = 4, which is possibleexperimentally sincethe hyper ne splitting % =
9:1926GHz is large compared to typical resolutions of our laser systems. And
now a bit of confusion, we chooseto denote the total angular momertum of a
single atom by j and for a collection of atoms (in the F = 4 state) we denotethe
collective total angular momertum by J, i.e.

X
J= o (2.1)
i=1

where N is the number of atoms in the F = 4 state and j(V) is the total angular
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momertum of the i'th atom. The reasonfor using J and not F is that J is
generally more used in the literature for spins, and indeed, we wish to think
about our spins more abstractly than just the properties of someatoms. Many
results in this thesis should be applicable in a broader sensethan to a collection
of cesiumatoms.

In our experiments the number of atoms N will be of the order 10'? and we
will almost always aim at having all atoms polarized along one direction which
we denote asthe x-axis, seeFig. 2.1(b). With the x-axis as quartization axis we
thus have mg = 4 for all atoms to a high degreeof accuracy and the collective
spin ) will really be a macroscopicentity. With this experimertal choice, we
may treat the x-componert of the collective spin as a classicalc-number, i.e. we
replace the operator J by the number J,. The transversespin componerts J‘y
and J; maintain their quantum nature. They will typically have zeroor a small
meanvalue. The quantum °uctuations are governedby the commutation relation
and the Heiserberg uncertainty relation (with h = 1)

h i
3y 8 =iy (2.2)

) Var(Jy) evar(Jy) , %: (2.3)

Pictorially, we add many small spinsto a macroscopicspin, seeFig. 2.1(c), and
the direction of this macroscopicspin has no precise meaning but can only be
de ned within the quantum uncertainty (depicted by the gray disk) stated quan-
titativ ely by Eq. (2.3). With 10 atoms the angular quantum uncertainty of the
collective spin direction is of the order 10' 8.

To connect our spin systemto quantum medanics more generally, we note
that the classicalJ, enableusto de ne new quantum variables XA and Py by

h i
Xa = Pj‘\]L; Pa = Pj‘\]i; ) XaiPa =1i; (2.4)

where the subscript A refersto \atoms". The above is exactly on the form seen
in many text books on intro ductory quantum medanics. Even though we know
that e.g.J\y has a discrete spectrum of eigervalues, which must be inherited by
X a, we e®ectively have cortin uousquantum operators asordinary position ® and
momertum P when N is large. For this reasonwe can depict the transversespin
variables J;, and J;, as seenfrom above asin Fig. 2.1(d,e). The disk or ellipse
symbolizesthe Heiserberg uncertainty relation asis often seenin the literature

on e.g. description of the electromagnetic eld. As we shall seein Chap. 11,
protocols for quantum information processingcan be very well described in the

X; p-languagewith no speci ¢ referenceto the cesiumatom.

We "nalize this sectionwith a very important de nition. If all atomsin the
F = 4 state have mg = 4 (or mg =  4) the collective spin is said to be in the
coherent spin state 1(CSS). In this state all atoms are independert of ead other

1Coherent spin states are discussed more generally in [1]
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Figure 2.2: (a) Somedi®erer basischoicesfor the polarization of a photon. (b)

For many x-polarized photons the Stokes vector has practically a classical Sy-
componert. The transversecomponerts éy and 8, must satisfy the Heiserberg
uncertainty relation (2.8) symbolized by the gray disk. (c) We may restrict
ourselvesto a top view of (b) sinceonly the transversecomponerts X, and P,
play a role concerningthe quantum state. (d) Non-classicalstates of the Stokes
vector are possible,here squeezingof one quadrature.

in the sensethat the total wave function is the product function of ead atom in
mg = 4. This state alsoful'ls the minimum uncertainty relation

J2 :

Var(Jy) ¢var(Jy) = ZX (coherert spin state) (2.5)
and we will seein Chaps. 9 and 10 that this equality seresas a referencepoint
for manifestly quantum states, i.e. statesthat have no classicalanalogue.

2.2 Polarization States of Light

All experiments in this thesis involve laser light interacting with atomic spin
states, and it turns out that the polarization of the light is the relevant quantum
variable to describe. Below we intro duce the description of polarization states of
light in generalterms, for a more rigorous de nition seeApp. A.

Now, considera pulse of light, or a collection of photons, propagating in the
z-direction. The polarization state is well described by the Stokes operators

Se= 2000 1 on(Y)
S = %(hph(+45i)i Apn (i 459) ; (2.6)

& = 3 (0 () 1 ton (%4 )
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where fpy (x) is the number of photons in the pulse with x-polarization, and so
on (the di®eren ways of describing polarization are depictedin Fig. 2.2(a)). The
Stokes operators are dimensionless,they count photons. In other chapters we
will also consider Stokes operators measuring photon °uxes.

We shall make our rst approximation right away. We assumethat almost all
photons are linearly polarized along the x-direction (we could have chosenany
direction). For a pulse containing many photons this meansthat we can treat
8! S, asac-number. Note, this is very similar to the approximation of a well
polarized sample of spinsin the previous section.

It canbe shown that the Stokesvector satis es angular commutation relations
(seeEg. A.13), i.e.

h i
éy;éz = iSx (2.7)

2
) Var(§) evar(S,) , Sy (pulse of light) (2.8)
The operators §y and $, are our interesting quantum variables, they usually have
zero mean value sincea collection of x-polarized photons have polarization § 45*
or ¥ with equal probability being one half. But we remark, that if the linear
x-polarized light is rotated by an angle y around the z-axis the balance between
the 8§ 45*-componerts is changedand éy getsa non-zeromeanvalue. In fact

D E

§ =2S,¢u (for u¢ 1) (2.9)

We seethat éy is a measureof the polarization rotation, and that the quantum
°uctuations of éy can be interpreted as quantum °uctuations in the direction
of polarization. This kind of rotation will prove to be very important when we
considerthe interaction of polarized light with atomic spins.

The classicalS, componert and the quantum uncertainty of the éy and §, can
be depicted asin Fig. 2.2(b) (just like the casefor atomic spinsin Fig. 2.1(c)), the
gray disk symbolizesthe Heiserberg uncertainty relation (2.8). We may also see
this disk from above asin Fig. 2.2(c,d), where we have de ned the new quantum
variables (subscript L refersto \ligh t")

h i
>€L = P%i IﬁL = P%; ) %L;IﬂL =i (2.10)

We see,as in the caseof atomic spins, the polarization quantum state of light
is similar to the standard position/momentum operators. The mathematical
equivalenceof the spin and light operators motivate the seard for possibleim-
plemertations of quantum information protocolsthat exchange quantum states
betweenlight and atoms.
If we gointo a little detail with the operators X, and P_ it actually follows
from Eq. (A.14) that
Y N
X, = a—yp}ﬁ and P = a—ylé;y (2.11)
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where &) and &, are the creation and annihilation operators for photons with
y-polarization. In our approximation with strong linear polarization along the
x-axis the x-polarized part serwes as a \reservoir* of photons cortrolling the
strength of the pulse. It alsosenesas a phasereferencefor the y-polarized part
which carries the interesting quantum °uctuations.

As a nal remark of this section we consider an x-polarized pulse of light
emergingfrom a laser. Then the y-polarized mode is in the vacuum state and we
easily nd

SZ
Var($,) tvar($;) = TX (light pulse, coherert state); (2.12)
which is actually valid for the y-polarized mode being in any coheren state. As
for atomic spins, this equality setsthe benchmark point for non-classicalstates
of the light polarization. If Var(éy) = Var($,) = S¢=2 we sa that the noise of
§, or S, is at the so-calledshot noise level.

2.3 Interaction Between Atomic Spins and
Polarized Light

Let us now introducethe interaction of polarized light with the atomic spin state
of a sample of atoms. A detailed calculation will be given in Chaps. 5 and 6.
First, considerFig. 2.3(a) which shaws the level scheme of the 6S,-, and 6P3-»
states of cesium. We tune a laser, which we call the probe laser, to the dipole
transition betweenthesetwo levels and we may choosea detuning ¢ measured
from the F = 41 FO%= 5 transition with red detuning being positive.

The polarization state of this laser light may changein di®erernt ways if it
interacts with an atomic sample. First of all, the absorption of one polarization
componert may be di®eren than the absorption of another polarization compo-
nernt. This clearly changesthe polarization state, but we will not consider this
situation at all in this thesis. The absorption prole of the transition will look
like the solid line graph in Fig. 2.3(b), in the wings it will fall o®as 1=¢ 2. Going
to a suxciently far detuning we can make absorption e®ectsnegligible compared
to dispersion e®ects,the latter fall o®as 1=¢. A typical dispersion pro le (for
asingleF ! FP9transition) is showvn with the dashedline graph in Fig. 2.3(b).
Dispersion e®ectswill changethe polarization state of light if the index of refrac-
tion is di®erert for two orthogonal polarization componerts, i.e. if the sampleis
birefringent.

Fig. 2.3(c) shows a pulse of light propagating in the z-direction through an
atomic samplewhich is polarized alongthe x-direction. Classically, it is clearfrom
simple symmetry reasoningthat we may have ny 6 ny (the sample has linear
birefringence), while e.g. n.45+ = N; 45: and ny, = ny, . Thusthe x-direction is
an optical axis and x- or y-polarized light will passon without change,i.e. §, will
be unchanged by the interaction. If we let light with linear polarization along
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(c) (d)

Ny, 6 Ny,

312
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Linear birefringence Circular birefringence
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&, constart &, constart

Figure 2.3: (a) The probe laserinteracting with cesiumatoms and the relevant
level structure. The detuning ¢ is de ned relative to the F = 4! FO9= 5-
transition and is positive for red detuning. (b) The absorption (solid line) and
refractive index (dashedline) in generalfor an optical transition. For suzciently
far detuning absorption e®ectsare small sincethey fall o®faster (as 1=¢ 2) than
dispersion e®ects(fall o®as 1=¢). (c) A light pulse on an atomic samplewhich
is aligned along the x-axis will change its polarization, the sample has linear
birefringence with di®erert indices of refraction n, 6 ny. A §45"-polarized
pulse will becomeelliptical and vice versa,i.e. S, and §, will change. With the
x-axis as optical axis the S, componert is unchanged. (d) For spins oriented
along the propagation direction, there is no preferred direction in the xy-plane,
but the sample has circular birefringence with ny, 6 ns, . Linear polarization

will rotate, i.e. §¢ and §, change,but the S,-componert is unchanged.

the +45*-direction interact with the atoms, the light polarization has both an
x- and y-part which are subject to di®erent phaseshifts. This will change the
ellipticit y of the light, or in other words S, and S, beginto mix up. A quartitativ e
discussionof this e®ectis given in Sec.6.4, seeEq. (6.16) and (6.17).

Another exampleis shown in Fig. 2.3(d), where the atoms now are oriented
along the z-direction. Classically we have in this caseny = Ny = Nigs+ = N; 45+
since there is no preferred direction in the xy-plane. But spins pointing in one
direction along the z-axis is, from a classicalview point, the sameas a charged
particle rotating in one direction around the z-axis. This suggeststhat we may
have ny, 6 ng, , the sample has circular birefringence. The di®erernt phase
shift experiencedby the % - and % -part of the light will rotate the polarization
around the z-axis, hence $; and begin to mix up. The number of % - and
% -photons cannot be changedby this phaseshift, thus §, is unchangedin the
process.A quartitativ e discussionof circular birefringenceis givenin Sec.6.2.

For our experimerts the linear birefringence turns out to play a minor role
comparedto the circular birefringence. Linear birefringence is non-existing for
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spin-1=2 particles?, and if the detuning ¢ is much greater than the excited states
hyper ne splitting ! nts.e the probe laseronly experiencesthe spin-1=2 properties
of the electron. We have approximately that linear birefringenceis proportional

to ! hts.e=¢ 2. Circular birefringenceis possiblefor a spin-1=2 particle and survives
large detunings, i.e. is proportional to 1=¢. Another way of understanding this is
that the dispersive proTe shawn in Fig. 2.3(b) for ead transition F = 4! F°=

3;4;5 will interfere destructively for the linear birefringence and constructively
for circular birefringence. A quartitativ e measureof the aboveis partly expressed
by the parametersde ned in Eq. (5.16).

In the following we assumethat linear birefringence is zero, and that light
and atoms are polarized along the x-direction. We are now ready to give a
qualitativ e derivation of the equationsof interaction betweenpolarized light and
atomic spins. Theseequationsare the basis of the work in this thesis.

First, when linearly polarized light passeshe atomic spin in the z-direction,
the circular birefringence causedby the spin comppnert J, will rotate the polar-

ization of the light. Eventhough the meanvalue J, may be zerothe quantum
°uctuations of J, causepolarization rotation. This is expressedquartitativ ely as

S (t) = S (1) + aS, Jy (v); (6.11)

where\in" and \out" refersto the light before and after the interaction. The
Stokes vector with strong x-componert S, is rotated by an angle aJ; around
the z-axis where a is a constart describing the strength of the interaction. The
above equation is calculated to “rst order with af, ¢ 1. This is also known as
the Faraday e®ect. We know that circular birefringence does not a®ect$, and
we neglectedlinear birefringence, hence

8ot (t) = 8n(t): (6.12)

The light leaving the atomic samplecarriesinformation about the spin componert
J:. We seethat a measuremen of S will give information about J;, and if the
interaction constart a is large so that the secondterm of (6.11) dominates the
Tst we canget really detailed information about J,. The Heiserberg uncertainty
relation (2.3) then requiresthe interaction alsoto a®ectJ\y. A calculation shows

that the time ewolution of Jj is
gj\y(t) = al, S (t): (6.13)

The physical processinvolved is the Stark shift of the magnetic sublewels de-
pending on the helicity of the light givenby $,. The splitting causedby the light
will, just like a constart magnetic "eld along the z-direction, causerotation of
the spin around the z-axis. The strong Jx componert will then cortribute in the

2Linear birefringence is caused by alignment terms, e.g. [2 i f‘f, For a spin-1=2 we have
[2 = I¥ = 1=4, hence no alignment.
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y-direction, the angular rate of spin rotation being a$, (t) where we normalized
8§, (t) to measurephotons per second. Finally, the J, componert is una®ectedby
the interaction,

gfz(t) =0 (6.14)

This follows from the fact that S, is constart and the consenation of angular
momertum along the z-direction. Spin °ips along z must be accompaniedby
changesof % -photons into a % -photons or vice versa.

The strong componerts S, and J, are e®ectiwly unchangedby the interac-
tion. In our experiments the typical rotation of light polarization or spin polar-
ization amourts to approximately 10' ® radians, and we may clearly assumeSy
and Jy to be constart.

The above equationsare linear, they couple polarization states of light to the
spin states of atoms. Note, that quantum properties of the spin state can be read
out on light by (6.11) and that quantum properties of light can be fed into atoms
by (6.13). We study the °ow of quantum °uctuations of this kind in detail in
Chap. 8.

Note also, that (6.11) enablesus to measureJ; (if the Tst term is small),
and at the sametime (6.14) ensuresthat the state of J, will not be destroyed in
the measuremeh process.Thus, we are able to perform quantum non-demolition
(QND) measuremets of the atomic spin. This will prove very useful for genera-
tion of entangled states as we will describe in Chap. 9.
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CHAPTER 3

Motiv ation - Quantum
Information Pro cessing and
Comm unication

In this chapter we try to give the reader an overview of the “eld of quantum
information processingand quantum communication. This is a part of physical
sciencewhich has grown very rapidly since the beginning of the 1990'ies. The
physicsinvolved s very interesting in itself but technological advancemen is also
a motivation for studiesin this "eld. We will brie°y touch the areasof quantum
cryptography, quantum computing, quantum communication, and precisionmea-
suremens. We aim to describe for the reader where our work should be placed
in this context.

3.1 Why Quantum State Engineering

In Chap. 2 we introduced our experimental systems,spin polarized atomic sam-
ples and polarization states of light. We explicitly concerrated on quantum
variables and not classicalmean values. There are somereasonsfor this being
an interesting approac.

2 Quantum states are rich in the sensethat it takes many parameters to
describe the quantum state. For our systems, which approximately are
cortinuouslike position * and momertum p of a particle, the quantum state
is in principle described by a wave function A which for eah x assignsa



14

Chapter 3 - Motiv ation

complex number A(x), a vast amourt of complex numbers. We could also
count e.g.individual spin-1/2 particles which ead have a Hilb ert spaceof
dimensiontwo. The joint quantum state of n spin-1/2 particles is described
by 2" complexnumbers,an amourt rapidly increasingwith n. This richness
is exploited in quantum computing protocols, aswe will discussin the next
section.

Quantum states cannot be cloned[2]. This meansthat there is somesort of
privacy in quantum states. If | have a secretmessageencaded in a quantum
state an eavesdropper will have to steal the ertire quantum state in order
to obtain this messageand accordingly | would loosethe quantum state -
a situation that | would recognizeand act upon.

The above point also preseris a very big challenge. With only one copy of
the quantum state we are very vulnerable to lossmedanisms. Information
about the quantum state can\leak" into the surrounding ervironment and
be inevitably lost. Excluding unwanted coupling to external degreesof
freedomis thus a big challenge.

The fact that we canreac a situation wherequantum mechanicsis essetial
to describe the ewolution of physical systemsand especially the need of
quantum medanics for the understanding of encading and processingof
messagess satisfactory in itself for a physicist and it may be a very crucial
step for future technological achievemerts.

3.2 Technological Implemen tations

In the previous section we gave somerather abstract reasonsfor quantum states
beinginteresting. In this sectionwe concerrate a little more on what hasactually
beenproposedor achieved.

2 Quantum cryptograph vy is an area of physics dealing with secretcom-

munication. The aim is often to distribute a key between two parties,
Alice and Bob, and this key must be unknown to everyone else. Quantum
cryptography exploits the fact that quantum states cannot be cloned [2].
For instance a single photon can bear information sert from Alice to Bob.
An eavesdropper cannot steal this photon or perform measuremets on it
without being recognized. Quantum cryptography has beenimplemented
using single photons or at leastweak pulseswhich very seldomcontain more
than onephoton [3]. Using single particles asinformation carriersis elegarn
and intuitiv e. But pulsescortaining many photons have also beendemon-
strated as an implementation for secret communication [4, 5, 6, 7, 8, 9].
If our physical systemsshould be implemerted for cryptography it would
possibly be along theselines.
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2 Quantum computation is a big motivation for exploiting and cortrolling
quantum systems. The most famous proposals are Grover's seart algo-
rithm [10] and Shor's algorithm for prime factorizing integers[11]. Both
algorithms will be much faster than any known algorithms on a classical
computer. The theory of quantum computation utilizing qubits (quantum
superpositions jAi = ®j0i + ~ j1i of two discrete states j0i and j1i) and a
few operations on qubits (e.g. the phasegate and the CNOT-gate) is well
dewveloped. With an appropriate combination of thesebasicbuilding blocks
any computation canin principle be performed [12]. Many small-scaleex-
perimental demonstrations of quantum computing have been performed.
To mertion a few, ion-traps have beenproposedand used[13, 14, 15] and
nuclear magnetic resonanceNMR) of moleculeshave beenusedto e.g.fac-
tor the integer N = 15 [16]. Scaling up of quantum algorithms to large
systems have not yet beenimplemerted, sinceit is a very ditcult task.
The processis very vulnerable to decoherenceand must rely on quantum
error correction. A review of quantum computing including error correction
is given in [17].

The above implementations all deal with discrete quantum systems. There
are someproposalsfor quantum computation [18] and quantum error cor-
rection codes[19, 20] over contin uousvariablesbut the discreteimplementa-
tions seemmore promising. In [21] it hasbeenshavn how distinct coheren
states can \discretize" contin uous variables and thus simulate qubits. This
proposal requires generation of superpositions of distinct coheren states
(SchrAdinger cat states) which is a di+cult task. A proposal for gener-
ating such states in an ensenble of spin states like ours is given in [22].
Sdradinger cat states have beenexperimentally demonstrated for an elec-
tromagnetic “eld [23] and for the motional state of a trapped ion [24]

2 Quantum comm unication isthe transport of (unknown) quantum states
from oneplaceto another. This could be amonge.g.two atomic samplesor
from an atomic sampleto a beam of light (these processare in somecases
called teleportation ). Again, the no-cloning theorem [2] imposessomerules
to follow. If a quantum state is to be sert from Alice to Bob, the initial
state at Alice's place must be completely destroyed in order for Bob to re-
create exactly the samestate. Also, information about the state must not
leak into the ervironment or be measuredby any obsener in the process.
These facts require good isolation from external degreesof freedom and
someclevernessin handling the quantum states. In Chap. 11 we will shaw
that protocols actually exist for physical systems of our kind. In fact,
continuous systemswith many particles have an advantage over discrete
systemsin teleportation protocols. Quantum teleportation of quadratures
of the electromagnetic eld hasbeenacdhieved[25]. Teleportation of discrete
states of a photon has partly been performed [26, 27]. In these cases,
however, a completeteleportation protocol that always works is ditcult to
implemert [28, 29].
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2 Quantum memory is the processof storing and retrieving a quantum
state from somelong lived physical system. This could be achieved with
the help from teleportation, e.g.the polarization state of a pulse of light
could be teleported onto the spin state of an atomic sample. After some
time (lessthan the atomic decoherencdime) we could teleport the atomic
spin state back to another pulseof light. Protocolsalongtheselinesarevery
relevant for us and will be discussedn Chap. 11. Another approac toward
guantum memory is the useof electromagnetically induced transparency to
map states of the electromagnetic eld onto atomic variables[30]. This has
beendemonstrated experimentally for classicalmeanvalues[31, 32, 33] and
is a promising candidate for a real quantum memory.

2 Entanglemen t generation is a key ingredient for quantum teleportation
protocols but alsoin itself it provides a very interesting study of quantum
medanics. Generation of entangled states of the electromagnetic eld has
beenadchievedin many casessomeexamplescanbe found in [34, 35, 36, 37].
One of the really famous studies of such states was the rst experimental
violation of Bell's inequalities [38, 39] where the very basis of quantum
mecdhanics was tested. We demonstrate the creation of an entangled state
betweentwo atomic samplesin Chap. 10. See[40, 41] for other examples
of entangled states between massiwe particles.

2 Precision measuremen ts is also a motivation for the study of quantum
states. Spin squeezingcan improve signal to noise ratios of certain mea-
surements [42]. In fact in [43] it was shown that the best cesiumfrequency
standards today are limited by the projection noise of spin states. Spin
squeezingof atomic states have beendemonstrated in [44, 45].

In short, there are many possibleimplemertation of our researt. Our particu-
lar physical systemswith strong light pulsesand macroscopicatomic samplesis
well suited for teleportation protocols,quantum memory protocols, entanglemernt
generation, and precision measuremets. There will probably be someapplica-
bility in the "eld of quantum cryptography. The "eld of quantum computation
seemsto be the hardest problem to addresswith our presert knowledge.

3.3 Contin uous Versus Discrete Systems

Our physical systemwith many photons and many atomsleadto contin uousvari-
ablesasintroducedin Chap. 2. In this sectionwe motivate the useof contin uous
systemsfor light/matter interactions and we draw attention to (dis)advantages
of thesekinds of systems.

A very important motivation for using many particles is the question of in-
teraction strength. If light and atoms only induce weak changesto the quantum
state of eat other we would not be able to let quantum °uctuations °ow from
one systemto the other with high exciency. The interaction betweenlight and
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matter is (in the dipole approximation) basically governed by the Hamiltonian
Hine = | d ¢E whered is the dipole operator of the matter particle and E is the
electromagnetic "eld. We need this Hamiltonian to be of sutcient magnitude
which can be reached in a number of di®erert ways.

2 The electromagnetic eld E can be made really big. One way to do this
is to place a single particle inside a high nesse cavity which may enhance
the interaction by many orders of magnitude [46].

2 The dipole momert of a single particle can be madelarge by using Rydberg
states of atoms. Examplesare givenin [47].

2 Yet another possibility is our apprgadw. Using many particles we will have
a large joint dipole operator D =  d; and using a relatively strong "eld
E we may approac a strong interaction regime. The "gure of merit is
here Eq. (6.11), we needthe secondterm aS,J; to be of the order of the
rst term §)‘,” to have strong coupling. With the quantum noise limited
variancesfor spins (2.5) and polarization states of a light pulse (2.12) we
concludethat Var(aS.Jy) . Var(Qiy“) when a?S,J, . 1. The parameter a,
which is given by Eq. (6.15), has for our setup typically a value such that
the strong coupling condition is of the order S,Jy , 10°°.

Of the three approachesabove oursis by far the most simple from a technical per-
spective. We usefree propagating light through a sampleof atomsin the ground
state. When technical challengeshas beendealt with, the other two approaces
reveal a more simple and elegant quantum system than ours. Especially, the
internal atomic state is described by a low dimensional Hilb ert spacecortrary to
our practically in nite Hilbert space.

Another aspect of macroscopiccortin uous systemsis robustnessto decoher-
ence. Somepeople often state mistakenly that a very big quantum system de-
coheresvery fast simply becauseof the number of particles involved. This need
not be the case. We deal with the collective properties of e.g. the spin state of
an atomic ensenble with ¥ 10'? particles. The role of eac atom is totally neg-
ligible, if one atom is lost the quantum state of the ensenble will be unchanged.
If on the other hand 10% of the atoms are lost or subject to decoherencewe will
seethe e®ecton the quantum state of the collective spin variable. The atoms co-
operate in a fashionwhere ead atom cortributes very little but the huge number
of particles together make a di®erence.So, we must screenour atoms in general
from decoherenceput we neednot care about a single atom alone.

If we should concludethis chapter with somegeneralremarks about our ap-
proach with many particles and other approades with small systemsit would
be: Large systemsoften have technical simplicity from an experimental point
of view. They have a clear advantage in the “elds of quantum communication
but lack good ideasin the areasof quantum computation and error correction.
Small systemsare often very involved experimertally but that said the concep-
tual understanding is simple and elegan. These systemshave an advantage for
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purposesof quantum computation, quantum cryptography, and error correction.
For quantum communication protocols they meet ditculties.
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CHAPTER 4

Exp erimen tal Metho ds

In this chapter we discuss general aspects of our experiments. This includes
details about lasers, glasscells with cesium atoms, magnetic "elds and Larmor
precessionspin life times, and optical pumping. We concertrate on properties of
lasersand atomic samplescommonto many experiments and we discusstypical
values of experimental parameters for the work preseried in this thesis. More
speci ¢ experimental details will be given in the di®erert chapters connectedto
the experimental results.

During the past four years we have moved laboratories twice and made a
major upgrade of the experimental setup. Some reasonsfor the upgrade are
discussedin Sec.10.2. The contents of the presen chapter describe the newer
setup sincethis will be more relevant to most readers. Important di®erencesare
mentioned in other chapters when appropriate.

4.1 Laser Systems

The level scheme of cesiumis showvn in Fig. 4.1 together with sometransitions
at which we apply laser beams. All our interesting physics mainly takes place
in the F = 4 hyper ne multiplet, and we needlasersfor state preparation and
manipulations. The goalis to create high quality coherent spin states.

One laser called the optical pump laser is tuned to the 6S;-5;F = 4!
6P,-o;F = 4 transition (894nm). Its main purposeis to pump atoms into the
extreme F = 4;mg = 4 ground state magnetic sub-level which is the starting
point for many interesting experiments (seediscussionin Sec.2.1). Note, that
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Figure 4.1: The level scheme of cesium and the lasersusedin the experimernt.
The nuclear spin | = 7=2 createshyper ne splitting with F = 3;4 of the cesium
ground state. All our experimerts concerirate on atoms in the F = 4 hyper ne
levels and to measureproperties of these atoms the probke laser is coupled o®-
resonarly with detuning ¢ to the 6S,-,;F = 4! 6P, transitions. The repump
laser and the optical pump laser are tuned into resonancewith the 6S;-,;F =
3! 6P3-;F = 4and 6S;-,;F = 4! 6P.-;F = 4 transitions, respectively.
Theselasersredistribute atomsamongthe ground state levelsby optical pumping,
for more details seeSec.4.5.

the F = 4;mg = 4 state is a dark state if this laser has ¥4 -polarization.

Another laser called the repump laser is tuned to the 6S;-;F = 3!
6P;-o;F = 4 transition (852nm). This laser is responsible for taking atoms
out from the F = 3 ground state and into the F = 4 ground state. To someex-
tent the strength of this laser controls the number of atomsin the for us relevant
F = 4 sub-states.

The repump laserand the optical pump laserare both homebuilt diode lasers,
a picture is shown in Fig. 4.2. During the past four yearsa number of di®eren
laser designshave been used, the presert one being the most successful. The
diodesare anti-re®ection coatedand can be purchasedfrom Eagleyard Photonics
GmbH in Germary. The diodeswork very well but we have had someproblems
with the life time. The laser cavity consistsof the diode bad side together with
a di®raction grating with 1800 lines per mm in the Littro w con guration, see
Fig. 4.2(a). This ensurestunability over a broad range of wavelengths. The
light passesan optical isolator and a small fraction is split o® for locking to
the right transition by frequencymodulated absorption spectroscoyy [48, 49, see
Fig. 4.2(b). The remaining beamsare usedin the experiment for optical pumping
(see Sec.4.5) creating macroscopicspin states with high degreeof orientation.
The lasersare running cw, at preseri we create pulsesof light by acousto-optical
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(a) (b)

Grating
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Figure 4.2: The diode lasers. (a) A picture of a laser diode hidden inside a
copper block directing its beam to a di®raction grating (the small square). A
piezo-elemeh connectsthe grating to a steel ball which can be xed by two
screwsseenat the top. This designis cumbersometo adjust but very stable
when working. (b) The work principle of the laser. After the grating the light
passesan isolator and a small fraction is re°ected on a PBS for saturated FM
absorption spectroscopy [48, 49]. The remaining beam is shaped into pulseshby
an AOM. When lasersare working well, more than 25mW of power is available
for the experiments.

modulators (AOMs). Historically we have also been using a chopper for this
purpose, but the AOMs are much more °exible in terms of timing the laser
pulses.

A third laser called the proke laser is detuned by an amourt ¢ from the
6S:-,;F = 4! 6P3-,;F = 5Stransition (852nm). Di®erert valuesof the detuning
have beenusedaround ¢ %2 1GHz (negative for blue detuning). This detuning
is much smaller than the ground state hyper ne splitting at ¥4 9GHz (so that
light is sensitive to atoms in F = 4 only) and considerably larger than the
hyper ne splitting of the upper state 6P;-, (this reduceshigher order e®ects
which will be discussedfurther in Chap. 5). The probe laser beamis produced
by a Microlase Ti:sapphire laserwhich candeliver typically around 1W of light at
852nmwhen being pumped by a Coherert Verdi V8 laserdelivering 8W of light at
532nm (doubled Nd:YAG). The setup is shown in Fig. 4.3 where alsothe locking
medhanism is pictured. The locking is similar to the caseof diode lasersapart
from the fact that the part split o®is passingthrough a b er coupled electro-
optical modulator (EOM) which createsstrong sidebandswith frequenciesup to
more than 1GHz. In this fashion detunings up to more than 2GHz are available
(we can use the secondside band for locking also). The probe laser is also a
cw laser, pulseswere historically created by a chopper but now we usean EOM
with a polarizing beamsplitter (PBS). The Verdi laserhasrelaxation oscillations
around 500kHz which are inherited in the spectrum of the probe laser. We are
vulnerable to laser noise but we 'nd that the noise spectrum is pretty quiet
around 325kHz (it would also be quiet at high frequenciesabove 1MHz). In
Sec. 4.3 we explain that our experiments are carried out in a way where the
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Figure 4.3: The probe laser. (a) A picture of the Ti:sapphire laser, the green
532nmpump beamis clearly visible. (b) The schematic view of the laser system,
a Coherert Verdi V8 laser delivers 8W of pump power to the Ti:sapphire laser
which typically delivers 1W of light power at 852nm. Part of this light is sert
through an EOM to create strong sidebandsat a chosenfrequencyof up to more
than 1GHz. The sidebandis usedfor FM absorption spectroscopy similarly to
the diode lasersin Fig. 4.2. The main Ti:sapphire beamis shaped into pulsesby
an EOM and a PBS.

frequencycomponerts around 325kHz are important. The probe laseris usedfor
guantum measuremeh of transverse componerts J\y and J, of the atomic spin
and for measuringthe macroscopicsize Jx of the spin states.

The AOMs and the EOM creating laser pulsescan be programmed to pro-
duce pulseswith soft edges(not step functions). This is important, a too steep
pulse would have frequency componerts at 325kHz creating problems for the ex-
periment. We also examined the possibility to usean AOM for the probe laser
but found that this causedtoo much excessnoisein the laser beam. AOMs are
turned on and o® by adjusting the power of an electric RF signal (in our case
125MHz). It is a non-trivial task to turn on and o®sud a signal, this is typically
done by electronic mixers. We found that for the mixers we used there was a
huge amourt of noiseaddedin the regime betweenon and o®, hencea quiet soft
pulse was impossibleto create. For the caseof an EOM the control is done by
a high voltage at DC. It is easyto exclude 325kHz signalsfrom a DC-signal, or
rather our high voltage supply is not even able to work at frequenciesaround
325kHz.

4.2 Atomic Vapour Cells

Our atomic samplesare very corveniertly placed inside a paratn coated glass
cell, seeFig. 4.4. The glasscell consistsof a volume not far from being a cube
with six small cylindrical extension, the internal distance betweentwo windows
is 30mm and the volume inside the cell is roughly 188 1cm?. Taking the glasscell
to be box-shaped this correspondsto an e®ectie transversearea A ¢ ¥4 6:0Cn?.
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Figure 4.4: A picture of a paratn coated vapour cell and a ruler shawing the
scale, the inside separation of two sidesis 30mm. Note, that windows give the
possibility to accessthe atoms with large laser beamsfrom six directions. The
“nger contains solid droplets of cesium, the temperature of these decide the
vapour pressureand hencedensity of atoms in the entire cell volume.

For the cell shavn in the "gure there are six windows which enableus to access
the atoms by large laser beamsfrom di®eren directions. In addition, there is
mounted a nger which contains droplets of solid cesium. The amourt of cesium
vapour in the cell volume is governed by the temperature of the solid cesium.

The cesiumatoms are kept in the vicinity of room temperature which means
that atoms are moving with velocity componerts of the order

%mcsvrzms;ldim = EkBT ! Vrzms;ldim Ya 137nFs, (4-1)
where kg is Boltzmann's constart and mcs is the cesium atomic mass. With
a cell dimension of 30 mm it takes of the order of 200t s between ead time an
atom collides with the cell wall. We discusslater (seeSec.4.4) that the atomic
spin life time is much longer than thesetime scales,the reasonthat atoms do not
depolarize at the wall collision is the fact that a thin layer of paratn has been
placed on the inside of the glasswalls. Our glasscells have all beenproduced by
Michael Balabas, S. I. Vavilov State Optical Institute, St. Petersburg, Russia,
for further information about the physics of paratn coated cells we refer to
[50, 51, 52].

Atoms moving at room temperature also cause Doppler broadening of the
optical line by an amount (seee.g.[53])

r—
o
ioD;HWHM = —O M = 189MHZ, (42)
C Mcs

where® is the optical frequency c the speedof light, and we chosetemperature
T = 300K. In our experiments we are concernedwith dispersive e®ectsand not
absorption. This also requires the probe laser beam to have a suzciently far
detuning ¢ A 189MHz.
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The fact that atoms move around gives some advantages. First of all, the
probe laser beam cannot 1l the whole cell volume but the motion of atoms
ensureshat all atomswill passthe beamat somestageduring eadhh measuremeh
There will also be someaveraging e®ectsof atomic motion, someatoms will be
closerto optical resonancethan others, but at a later stage these atoms may
be further from resonance. For suzciently long measuremen times all atoms
will experiencethe sameinteraction conditions with the laserbeam. And nally,
possibleinhomogeneitiesof magnetic elds causedi®eren Larmor frequenciesfor
di®erent atoms, but someaveraging reducesthis e®ect(this is discussedmore in
Sec.4.4).

4.3 The Rotating Frame and Magnetic Fields

All our experimernts are carried out with atoms being placedin a constart homo-
geneousmagnetic eld B along a direction which we de ne asthe x-axis in this
thesis. This will split the magnetic sub-levels and causespin precessionaround
the direction of the magnetic "eld. In App. F we give a detailed discussionof
the splitting of magnetic sub-lewels, here we just state that we choosea magnetic
“eld of magnitude % 0:9Gausswhich corresponds to precessionfrequency (Lar-
mor frequency)of - = 325kHz. There are seweral advantagesand dis-advantages
of this magnetic "eld.

Let us examinethe implications of the static magnetic "eld on the equations
of motion introduced in Sec.2.3 and stated quartitativ ely in Egs. (6.11-6.14).
The magnetic "eld cortribution to the Hamiltonian is B = h- J; where - is
the Larmor frequency This changesEgs. (6.13) and (6.14) into @‘\y(t):@ =
i - J3(t) + alyS" and @ (t)=@ = - J)(t), while Egs. (6.11) and (6.12) are
una®ected.If we introduce rotating frame coordinates (marked with a prime)

Iot) = + 3y (1) cog- t) + Iy (t) sin(- t);

1) = i Iy sin- 1) + Fx(t) cog- 1); “2)
a little algebra shows that the equations of motion are turned intg
SpU(t) = § (1) + asSy 3 Bty sin(- t) + It) cog- 1) ; (4.4)
S2(1) = 7 (); (4.5)
gjy(t) = a3, &7 (1) cog- 1); (4.6)
2990 = 2387 W sint- v @7

Our “rst obsenation is the fact that the dynamics of the rotating spin componert
areencaledaround the - = 325kHzsidebandof §§’“t. Lasersarein generalmuch
more quiet at higher sidebandfrequenciescomparedto the carrier and since we
are interested in quantum °uctuations of light and atoms interacting with ead
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Figure 4.5: Pictures of the cell mounts and the magnetic eld coils. (a) The
glasscell is here placed in an aluminum block which can be heated or cooled
by water. Closeto the cell we seea set of coils which are used for creating a
horizontally polarized RF-magnetic "eld. (b) The next layer consists of eight
coils with di®erent number of windings to create a homogeneoushias magnetic
“eld alongthe vertical direction. (c) At the outside we placetwo layersof! -metal
and one layer of iron to protect the atoms from external magnetic “elds.

other we cannot have our signals dominated by much stronger technical noise
sources.

Having rotating spins also enable us to measuretwo orthogonal componerts
J\y and J'\S with onelaser pulse aslong asthe measurementtime T is much longer
than the Larmor period - i 1. This fact will beclaried in Sec.9.4whenwe discuss
entanglemert generation. But the presenceof the magnetic eld will at the same
time force usto measureboth transversespin componerts with the simultaneous
pile up of noiseaccordingto (4.6) and (4.7). This is a strong limitation in some
cases,seee.g. the discussionin Sec.11.3. For a single spin sample the QND
nature of the measuremeh has disappeared.

The energy splitting causedby the magnetic "eld ensuresthat all magnetic
sub-lewelsare non-degenerate.This is important sincethe energybarrier preverts
atoms from doing spin °ips at a collision. This will be discussedurther in Sec.4.4
but we cannow referto Fig. 4.6 shawing the spin life time T, versusthe magnitude
of the constart magnetic eld B.

The magnetic eld homogeneiy must be of sutciently good quality. If this
is not the case,di®eren atoms following di®eren paths in spacewill accunulate
di®erert phasesand the joint spin state of atoms will decohere. This will be
discussedin detail below in Sec.4.4. The experimental setup for creating a
high quality magnetic "eld with good stability is shawn in Fig. 4.5. In part (a)
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we seethe glasscell mounted inside a plastic cylinder in a block of aluminum.

The aluminum can be heated or cooled by water and hence cortrols the glass
cell temperature!. A set of coils placed closeto the cell enable us to create a
horizontally polarized RF-magnetic eld. The role of this is to modulate the spin
state, seethe discussionin Chap. 7. In Fig. 4.5(b) we seethe coils creating the
constart high quality magnetic eld. Eight coils with equalspacinghave di®eren

number of windings optimized for high homogeneiy. Three independen current

sourcesconnectedto these coils allow further optimization of the homogeneiy.
The current sourcedriving thesecoils hasa relative stability better than 10' °. In

Fig. 4.5(c) we shav the outermost magnetic shielding consisting of two layers of
1 -metal and oneiron layer. The top and bottom are alsoshieldedand we exclude
laboratory “elds from a®ectingthe atoms. All together we create a magnetic "eld

of suxcient quality, in next section we discussquartitativ ely the requiremerts
for the magnetic “eld.

4.4 Spin Life Times

The life time of our macroscopicspin states with a large spin componert Jy

along the x-axis and transversespin componerts Jy and J; is well described by
two characteristic times T, and T, (which are well known conceptsfrom the lit-

erature). T; is the decay time of the longitudinal spin Jx following the model
Jy(t) = Jx(0)el ¥+ and T, is the samefor transverse componerts. We usually
have T; ¥4 200-300mswhich is much longer than T, - 30ms. The decay meda-
nisms of Jy must overcomean energy barrier set by the splitting causedby the
magnetic eld. The transversedeca will also be a®ectedby phase°uctuations

and henceT, can be much faster than T,. We often characterize the transverse
life time by a line width or decoherenceate j[Hz ] = (Yal»[s])i 1 and in this chap-
ter we often discussthe rate | .om Which is a decoherencerate common to all
magnetic sub-lewels. This rate is discussedmore carefully in Chap. 7 where we
alsodiscussin detail the methods for measuringboth T, and T,. In the following
we discussseleral experimental parametersthat a®ectT; and Ts.

As mertioned above the static magnetic eld B giving rise to the Larmor
precessionmust be of a sutcient quality. In Fig. 4.6(a) we show the T, life time
measuredas a function of the magnitude of B. We seethat there is a threshold
of the magnetic "eld strength of about 0.03Gaussabove which we may obtain
long spin life times T,. Our working point is far above this point and we have
usually T; valuesof somehundreds of milliseconds.

In Fig. 4.6(b) we seethe transverse decoherencerate j as a function of an
applied magnetic eld gradient. We seethat the rate increasesquadratically with
the gradient, we can understand this with help from a simple model discussed
in [54]. First, divide the atomic sample into two parts, 1 and 2, along the

1At the time of writing we are working on replacing the aluminum by non-metallic compo-
nents. Random currents in the aluminum have proved to create magnetic noise disturbing the
experiments, seeSec. 10.3.
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Figure 4.6: (a) T1 versusmagnetic eld strength. We seethat a too low eld

(below ¥4 0:03Gauss)prevents long spin life time. Our usual working point is
around B = 0:93Gaussfor which the spin life time yields somehundred millisec-
onds, here 380ms. (b) The magnetic eld also needsa sutcient homogeneiy to

prevent dephasingof the spins. We plot the decoherencerate given by the line
width j com versusan applied magnetic eld gradient and obsene the increase
of decoherencerate with increasing gradient. The measuremeh methods are
explainedin detail in Chap. 7.

bias magnetic "eld direction. If the samplelength is L and the bias "eld B has
strength By, the "eld strength in the two parts will be of order By § @y=@ ¢L
and the di®erencein Larmor frequency will be (gr!g=h)@x=@ ¢L according
to (F.4). Wefollow an atom during the time T it takesfor it to decohere.If visa
typical speedof the atomic motion, the number of visits nq in part 1 or n, in part
2 will be of order Tv=L, sinceead visit hasduration L=v. The diqerencenli no

hasmean zeroanq standard deviation of the order std(n;j ny) = Tv=L. Thus
the uncertainty #A in the accunulated phaseduring Larmor precessionis
: 1 L
A Y, QFTB %{X L ¢C ostd(n i n) %1
3 ¢ il
OF 1 B 2 L_3 H @Bx 2 .

) i YT Y 48)

h \ @
In the rst line we set +A equal to unity sincethis is the situation after the time
of decoherenceT. We seethat the broadening j inn by inhomogeneitiesscales
quadratically swith the “eld gradient. If we take gr Y2 1=4 (seeeq. (F.5)), L =
0:030m,v = kg T=mcg = 137m/s at T = 300K, we get gr ! g =h = 350Hz/mG
and expect the broadeningto be j i;n = 0:024Hz¢m2=mG? ¢(@B,=@)2.

The experimental investigation can be seenin Fig. 4.6(b) and we de nitely
con rm the scaling law predicted above. The numbers match within a factor of
two which puts somecon dence to our simple model but this is probably also
partly luck since we were very crude in the model with respect to factors of 2
and ¥4
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Figure 4.7: (a) The role of probe power broadening on spin decoherencerate

i com- We obsene the expected linear dependencefrom Eq. (4.9), the numbers
are commerted on in the text. Note, that we may also deducethe decoherence
rate in the dark by this method, herewe get j 4arx = 6:1Hz which correspondsto

a spin coherencetime T, = 52ms. (b) The spin decoherenceate versusatomic

density. These data give a typical picture, the decoherencerate increasesin a

non-linear manner with increasing density. The density is cortrolled by raising

the temperature of the vapour cell and measuredby polarization rotation, see
Eqg. (6.9).

In Chap. 7 we will learn that having j inn < °qz is important, where®qz is
the quadratic Zeemansplitting of someresonancespectra we utilize for spin state
characterization (seethe examplein Fig. 7.2(b)). Comparing our experimental
result with the splitting due to the quadratic Zeemane®ect(F.7) we nd for our
particular setupthat in orderto have j inn < °gz We must have 1=B ¢@ =@ dL <
1:2¢10 3.

Another processleadingto spin decoherencas the scattering of photons from
the probe laser when atoms undergo real transitions. Even though the probe
laser is detuned by % 1GHz and the populations of excited state levels are very
small they are not zero. The scattering rate j pn canbe estimated by the two-level
atom result (seee.g.[59])

o s 3 302
= _ 1 2
21+s

| ph " T6/Rce 2 (4.9)

where s = % is the saturation parameter. | is the beam intensity with
lsat = 2¥#hc®=3, 3 being the saturation intensity. , is the optical wave length, °
is the natural line width of the optical transition, and ¢ is the detuning (assumed
much greater than ° in the last step of the equation). If we insert typical exper-
imental conditions | = ImW=cm?, ¢ = 875MHz,, = 852nm,and ° = 5:21MHz
we get j on = 132Hz. This can be compared to experimental results shovn
in Fig. 4.7(a). First, howewer, we needto obsene that the scattering rate de-
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pendsonly weakly on beam sizefor a xed power. This e®ectis causedby the
atomic motion in and out of the beam. Even though the probe intensity can be
strong, the atoms will only spend little time inside the beamif the sizeis small.
The vapour cell geometry suggestsan e®ective crosssectional area of the cell of
Age ¥4 6. Then the experimertal obsenation j com[Hz] = 6:1+ 6:0 ¢P[mW]
corresponds to j pn [Hz] ¥ 36 ¢l [MW=cm?]. The experimental spin decoherence
rate is here a factor of almost 4 smaller than the simple two-level atom estimate.
We will not heretry to do more correct quartitativ e estimatesbut just mention
that the order of magnitude is correct.

The last decoherencemedanism we will commernt on is the dependenceon
atomic density, seeFig. 4.7(b). These data are typical, the decoherencerate
increasesin a non-linear fashion with the atomic density. If the decoherencds
causedby inter-atomic collisions we would expect the rate to increasequadrati-
cally with density, there is probably a quadratic contribution in the "gure. But
the situation is more complicated than this. The changein temperature may af-
fect the properties of the paratn, we have experimentally obsened many strange
kinds of dynamicswithout understandingthem very well. Also, the temperatures
are closeto the cesiummelting point at 28.4*C degreeswhich may also give rise
to complicated e®ects.We do not wish to understand all theseprocessesn detail
aslong as we can measurethem. The main point is that at our working values
of atomic density (up to 10**cm?) we have a reasonabledecoherenceaate but we
cannot go much further up without sacri cing the coherencetime.

4.5 Optical Pumping

A very crucial part of our experiments is optical pumping. In Sec.2.1we already
mertioned the fact that we are interested in atoms in the hyper ne state F = 4
only and we commerted on the importance of atoms beingin the extrememg = 4
state (or closeto this state) during the experiments. This is the so-calledcoheren
spin state and we will seein Chap. 9 that the ability to createthis state is crucial
for entanglemert generation.

We will not herecommert in detail about the theory of optical pumping, it is
awholesciertic “eld in itself and a review is givenin [56]. The basicideabehind
optical pumping is simple though and can beeseenin Fig. 4.8. The repump laser
and optical pump laserwhich were described in Sec.4.1 are applied to the atoms
with circular polarization. After sometime the extreme F = 4,mg = 4 state
is reached by many atoms. Depending on the strength of the repump laser a
fraction of atoms will be in someof the F = 3 statesand hencenot contributing
to the collective spin state measuredby the probe laser. The ability to adjust the
magnitude J of the spin state will proveto beimportant in Chaps.8, 9, and 10.

A very important property of the atomic spinsin the F = 4 states is the
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Figure 4.8: The principle of optical pumping, we wish to put all atoms into the
F = 4;mg = 4 magnetic sub-state. To this end we apply two % -polarized lasers,
the optical pump lasershown on the left part and the repump lasershown on the
right part of the gure. The gure on the left showvs an example where an atom
is in the state F = 4;mg = 2. The optical pump lifts this atom into the excited
F = 4;mg = 3 state from where it may decay into the ground statesF = 3 or
F = 4 with mg = 2;3;4. The mg value will never decreasein this processand
will on averageincrease. If mg = 4 is readed the atom is in a dark state and
will not move further. The occasionaldeca to the F = 3 statesis courteracted
by the repump laser shavn on the right. The number of atoms in the relevant
F = 4 states can be adjusted by the power of the repump laser.

orientation de ned by

X
m ¢HP%n.m i ; (4.10)
i F

T| =

where F = 4 in our caseand %, Iis the density operator describing the popu-
lation of atoms in the magnetic sub-statesjF = 4;mg = mi. If all atoms are in
m = 4 the orientation is equalto unity. For a completely unpolarized samplewe
have p= 0.

An experimental example of obtained orientations is shown in Fig. 4.9 where
the orientation of a sample of cesium is studied while the power of the % -
polarized optical pumping laseris increased. The pump light is on resonanceand
cortributes to the decoherenceof the spin state with a rate j pump (this will be
carefully de ned in Sec.7.2). This rate is plotted on the abscissain the gure
and is a direct measureof how many optical pump photons each atom scatters
on average per second. We seethat a few photons per secondare suzcient
for obtaining a high degreeof orientation, in this example 97%. This should
be comparedto a typical decay time T; of somehundreds of milliseconds, see
Sec.4.4. The repump laseris on at all times here and with its % -polarization
it helps creating an oriented sample. The repump laser alone can here be seen
to generatea 82% oriented sample. The methods for measuring orientation is
described in detail in Chap. 7.

We have obtained polarizations of up to more than 98% for higher densities.
The optical pumping laser at the 894nmD 1-line is essetial to this achievemert.
We have tried to optically pump on the D 2-line with somewhatlower orientation
asaresult (a little above p = 0:9). A possibleexplanation is that the re-scattered
light onthe F = 4, mg = 4! F = 5 mg = 5 transition from one atom
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Figure 4.9: An example of orientation p measuredfor increasing power of the
optical pump laser. On the abscissawe plot the power broadeningj ,ump Caused
by the optical pump laser which in turn is a measure of the strength of the
pumping process.For zerooptical pump power the orientation of 82%is created
solely by the % -polarized repump laser. Note, that a high degreeof orientation

(here ¥ 97%)is reached with a moderate amourt of pumping. The atomic density
is of the order 10°cmi 3.

a®ectsthe state of other atoms. Indeed, according to [57], even with a dark
state when using 894nm pumping light onewould expect problemswith densities
higher than a critical density ¥z = (¥R)| ! becauseradiation will be trapped
inside the sample. Here %4is the crosssection for light absorption and R is the
extent of the gas sample. Our atomic sample is Doppler broadened with the
width #°p = 378MHz. With a natural line width of the 894nm D 1-transition of
° = 4:6MHz and a sampleextent of R = 3cm we estimate the critical density Y&
to beroughly Yz V4 [, 2=2v4° =25 ¢R]i 1 = 2¢10cmi 3. This is only a little more
than our typical values. Howewer, the experiments tell us that the limitations
are still small.

Optical pumping into the coherent spin state with all atoms in the state
iy =4 gy £4i can also be seenfrom another perspective. This state fulls

J'\y = J, = 0and any deviation from this state is counteracted by optical

pumping. In Chap. 8 we model the optical pumping by equations @I\y(t):@ =
i i Jy(t) + Fy(t) and @3 (t)=@ = i i J5(t) + F,(t) where | describes the rate
of optical pumping and the operators If‘y;Z are Langevin forces ensuring correct
guantum statistics. Optical pumping is in this sensea cleanup of whatever state
hasbeencreated by other processeslf e.g.two spin samplesare in an entangled
state the optical pumping will drive the spin state bad to beingtwo independent
coherert spin states.
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CHAPTER 5

The E®ectiv e Interaction
Hamiltonian

In this section we will consider the real cesium atom with its hyper ne split
ground and excited states. We couple theseatoms o®-resonatly to the 6S,-, !
6P3-, dipole transition and we aim at the derivation of an e®ective Hamiltonian
to describe the physics of this interaction at the quantum level. We neglect
absorption e®ectsand spontaneous emission which is justi ed if the detuning
from the optical transition is large enough. We are left with dispersive e®ects
which essetially arise from the shift of atomic energylevelsin presenceof light
“elds. This is known as the Stark e®ect. As we already brie®y mentioned in
Sec. 2.3, the interaction enablesus to measurethe spin state of atoms, and
properties of the polarization state of light will at the sametime be fed into the
spin state of atoms.

This kind of interaction has beenstudied for sometime now, for a historical
review see[56] and referencestherein. The idea of using the interaction for
QND measuremets was given in [58, 59] and the calculations in the presen
chapter is closely related to these references. We will concerrate more on the
contin uous description of light and matter sincethis is corveniert for describing
the time dynamics that we actually measure. We also put attention to the fact
that cesiumis not a spin-1/2 system. This gives rise to higher order terms
of the interaction. We end up with an e®ective Hamiltonian (5.18) which is a
very conveniert starting point for further calculations. The derivation is rather
technical, we put many details in Apps. A-D.
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5.1 Electric Dip ole Interactions

We assumethat the light interacting with the atoms has a crosssectional area
A A 2 where, isthe wave length of the light. Then a onedimensionaltheory is
suzcient and we only needto careabout two polarization modes. With the prop-
agation direction (z-axis) as quantization axis the electric "eld description (C.9)
will be generalizedto

r Bi
E= O
220A

3 -

& (z:t)ew + &Y (z;t)el; + & (zt)e 1 + a)i/ (z;v)ef; ;5 (5.1)

wherethe unit vectorses ; and "eld operators &g (z;t) and & (z;t) are discussed
in Eqgs.( A.6) and (A.7). The dipole operator d = j er of a single atom can
corveniertly be expressedn tensor componerts. We write the vector r as

r=eljra+egro+ el r 1 (5.2)

where the tensor componerts of r are given by

X+ i X i
r+1—|—|9—y ro = z; ri1=—é§—y: (5.3)
With this de nition the dipole operator can be expressed
X ’
d= d;:;m;FO;mOeil + dg;m;FO;moeS + d;;m;FO;moe?1 ¥e:m;Fomo + hic;
F;m;Fo%m?©
(5.4

where we let F and m sum over ground state levels while the primed letters F©
and m° sum over excited states. The dipole momerts are de ned as

At .m.pomo = i €MF;mjryg jJFOmY;
dFm FOmo = ehF; mj rOJFO mq (5.5)
df nopomo = i €hF;mjr, 1JF°,m‘%.

The interaction Hamiltonjan Hint = i P d; ¢E(R;) will cortain the above dipole
momerts and the febctor h! ,=220A. We absorbtheseinto a single coupling con-
stant gF mFomo = 0=2h2 oAdF m:Fomo and the generalization of the Hamilto-
nian (C. 15) will turn into (in the rotatlng wave approximation)
X Z, 3
Rint = B [gg;m;FO;mo& (z;1)
Fim;Fomo 0 . (5.6)

+ gli:;m;FU;mOai (z; )] omo.rm (z;t) + hic: Y2Adz
Here,the “rst term contains the annihilation operator 4. (z;t) for a photon at po-

sition z with polarization % . This operator is accompaniedby the density opera-
tor ¥ omo.r:m (z;t) which will take an atom from the ground state jF; mi into the
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excited state jF % mY thereby absorbing the photon at position z. The strength
of this particular transition is governedby the coupling constart g;;m .Fo.mo Which
is non-zeroonly if m®= m+ 1, while gt .co..,0 is non-zerofor m®= mj 1. These
selectionrules and the actual valuesof the coupling constarts will be calculated
carefully in App. D. The valueswill turn out to be real, and we have omitted
the complex conjugation of thesein (5.6).

We also needto state the atomic Hamiltonian to have all fundamental equa-
tions at hand. For the momert we assumethat the energy levels of the ground
statesare degenerate(there is e.g.no static magnetic eld presen) and we special-
ize to one of the hyper ne ground states, i.e. F = 4. A possiblenon-degeneracy
can be accourted for later. We get for the atomic Hamiltonian

¥ X 2t
ﬁatom = h(! o+ € Fo)¥romoromo(Z; t)%2Adz (5.7)
Fo=3 mo 0

Here! o is the laser frequency which is detuned ¢ o from the upper state with
total angular momertum FC® The density operator % oo omo(z;t) measures
the probability for an atom at position z of being in the excited state jF % m9
and h(! o + ¢ o) assignsthe appropriate energyin this case.

5.2 The O®-resonant Limit

We will now changethe interaction Hamiltonian (5.6) into an e®ective Hamilto-
nian which dependson the light amplitudes and the ground state spin operators.
We can do this if we assumethe optical laser eld to be suxciently far detuned
from atomic resonance.In this casethe population of the excited states is neg-
ligible and the coherences¥:.m .Fomo betweenthe ground states jF; mi and the
excited states jF%m% will follow the ground state and the light "eld adiabati-
cally. We carefully work out the adiabatic elimination and solve for the coherence
%% mi 1.Fom (Z;t) in the following.

The time ewolution of %¢.m; 1.ro.m (Z;1) is governedby the Heiserbergequation

. h |
m: rEom (Zot 1
@ m 1(5‘”“( ) _ ™ Y%emi 1rom (21 A
=ji(lo+ Cro)¥%m; 1rom(Zit) (5.8)
i ig;;mi 1:F%m ()% mi uEmi 1(Z01)

9t men rom & (Z D)% m; 1Em+1 (Z31);

where the commutation relation (C.17) has beenusedon the Hamiltonian (5.6)
and two terms proportional to #go.m Fom (Z;t) and e o.m; 2.rom (z;t) have been
neglected(no population in the excited states). The next step is to acknowledge
that the light amplitudes &, (z;t), &, (z;t) and the coherence®e.m; 1.ro0m (z;t)
are oscillating fast with frequencies! ¢ and! o+ ¢ o respectively. We gointo the
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rotating frame of the light "eld by introducing slowly varying operators

emi 1Eom (Z1) = %m, wrom (Z;1)e P00 and &g (z:t) = as (z;1)el ' o
(5.9)
i.e. atilde marks the operator to be slow. Now the slow version of (5.8) becomes

.m: 1-E O ot .
@i, léo’m () = iCro¥m; urom (Z;1)

i igEJmi 1;F°;ma+(2;t)%=;m; LF;mj 1(z;1) (5.10)

i 9 mer Fom & (ZD)%m; 1Em+1 (Z51):
On the right hand side we now have a fast term oscillating at ¢ o >> Ti  where

T is atypical time scalefor the variation of the last two terms. Then it is justi ed
to put the time derivative equalto zero' and we get

.1 h
1
¥ mi LFom (z;t) = (];7,:0 g;;mi 1:F 0 & (Z;t)%‘:;mi LE:mj 1(z; 1)
i
+ Ok mer Fom & (ZD%mi 1Em+ (Zi1)
1 (5.11)
¥ m1 rom (Z1) = (Ii—,:o Ot .+ pom & (Z )% me; Fim+1 (Z31)

|
+ gE;mi 1;Fo;m&+(z;t)yF;m+1;F;mi 1(z;t)

where we have also stated the result for the coherence¥.m+1. rom (z;t). The
physical interpretation of the above equation is quite simple. In the rst line we
seekthe coherence¥.m; 1:rom, i.€. we want to know to which extent our atomic
state is in a superposition betweenthe ground state jF;m i 1i and the excited
state jF % mi. Suc a superposition can be createdin two ways.

In the “rst term on the right hand side, the population in the ground state
jF;m 1i parametrized by the density operator %.m; 1.r:m; 1 iS driven coher-
ently toward the excited state jF % mi by the "eld &. with strength of .. 1 rop, -

The secondterm describesanother possibility, the atomic state could already
be in a superposition betweenthe ground statesjF;m 1i and jF;m + 1i. This
is parametrized by the density operator &.m; 1.r.m+1 - The fraction of the atomic
wave function in the state jF;m + 1i can then be driven into the excited state
jF%mi by the "eld & with strength gi. .\ cop -

The solutions (5.11) can now be substituted into the interaction Hamilto-

1This is the adiabatic elimination, it can be shown to be equivalent to neglecting terms of
magnitude ¢ goT times smaller than the retained terms.
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nian (5.6) to obtain an e®ective Hamiltonian;

X ZLnh
Re® = ¢ (¢ ;m)al (z;t)a. (z;1)

m O
|

+c (¢ ;ml'za?/ (zD8 (1) YEmrEm(Z1) (5.12)
+b(e;m) & (z;t)a (z:1) % m; Fmi 1(Z51)

10
+ & (z;0)8 ()% m; 1Fma (Z1)  Y2AdZ

This Hamiltonian only works on time scaleslong comparedto ¢ iF& sincethis is
the approximation in the adiabatic elimination. We have intro duceda number of
coezxcients for brevity. The terms containing cg (¢ ; m) describe the Stark shift
of the ground state jF; mi causedby the coupling to the excited state jF%m § 1i.
The coezxcient is given by

§ 2
(G imiroms 1)”,

X
cgs(C;m)=j 2h
¢ro

Fo

(5.13)

The terms containing b(¢ ;m) describe the possibility to change ground state
from jF;m 1i to jF;m+ 1i through the excited state jF % mi by absorption of
a ¥ photon and emissionof a % photon (or vice versa). The coexcient is

(g;;mi 1;F0;m) ¢(g||:,m +1; Fo;m).
¢ FO .

X
b(¢;m)=i 2h

Fo

(5.14)

The coexcients (gﬁ;m;m;m V7 and (o . 1.pom) (GE 41 Fom) are calculated
in App. D, seeEgs. (D.12-D.14). Note, the denominator ¢ (o in the above two
equations exclude us from applying the sum rules (D.15-D.17) and the ertire
description becomesa little more complicated. We notice however that we can
group terms cortaining 1, m, m? from (D.12) and the squareroot from (D.14)
such that (still for the special caseof F = 4)

cs (M;¢) = hcc’z( §1am+am2)'
s(M %) =1 Za¢ 29,203 2M ™ &M, (5.15)
hce ,2 P , —. '
(mi¢) =i g spae @+ mE+m@ mEi m);
where the coeztcients ag, a;, and a, are given by
vl 1
1 1 7
== + +8 1 4 F=4
T4 e 11 e ; F=9
1 35 21
= i + 176 ! 1; 5.16
& 120“' 1] Co=C | 1] €0 ; ’ (5.16)
1 21
a > +16 ! O;

T 240 1j Ca=C | 1 € 4o=0
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Figure 5.1: The parametersag, a;, and a; de ned in Eq. (5.16) for F = 4. These
parametrize the strength of the Oth, 1st, and 2nd order terms in the Hamilto-
nian (5.18), respectively. On the vertical axis is the blue detuning (j ¢), and
the arrows indicate the limit for j ¢ ' 1 . We remind ourselesthat the cal-
culations are only valid for dispersive e®ects.Becauseof Doppler broadening we
should be careful at low detunings.

where we have chosento denotethe detunings¢ roas¢so=¢, ¢ 4= ¢ €45,
and ¢ 3 = ¢ j ¢ 35. Red detuning correspondsto positive valuesof ¢ and the
arrows indicate the limit ¢ ! 81 . The valuesof ag, a;, and a, are depicted in
Fig. 5.1. If we insert the expressions(5.15) into (5.12) we end up with

hce 2 X ZL3 h i

W= ane % &8, + &8 Ynm
LI i
+ = ala &84 m¥um
2h H

I 517
+a, ala + &8 My (®.17)

p
+ 2 4+ m)E+m)4i m(Si mE
|
a)i/a+%'n+l;mi l+a¥ai Y 1m+1 Y2Adz

where the (z;t) is left out for brevity. The density matrix operators and the
light operators &g, &} are grouped in a nice way here, the light “eld operators
can be written in terms of Stokesoperators, seeEgs. (A.8-A.12), and the terms
containing density operators can be expressedas spin operators with help from
Egs. (B.3) and (B.6-B.8). With these substitutions we may "nally write the
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e®ective Hamiltonian as

hco 2 Zys
A =1 he oy, @A@b+a s @@y

+a ARz S @O (Y S @Y (zit)  %Adz

Let uscommert on the di®eren terms. The rst term cortaining ag will just give
a Stark shift to all atoms independent on the internal state but proportional to
the photon density p‘hi(z;t). The secondterm cortaining a; rotates the Stokes
vector S and the spin vector J around the z-axis, known as Faraday rotation.
The last terms proportional to a, are higher order couplings betweenthe light
and the atoms. All these terms consene individually the z-projection of the
total angular momertum of light and atoms, e.g.the éi [ term can changea %
photon into a % photon (changing the light angular momertum along z by  2h
while the atoms receive 2k mediated by the atomic raising operator j 2. The total
angular momertum must have its z-projection invariant sincethe physical system
is axially symmetric around the direction of light propagation (the z-axis). We
remenber that the parametersag, a;, and a, depend on the detuning ¢ and they
are givenin Eg. (5.16) for the caseof F = 4. In general,the term proportional to
a; is useful for us and the higher order terms proportional to a, create di®erer
problems. This will be discussedfurther in Chap. 6 where the calculations also
will comparethe magnitude of the a; and a, terms more quartitativ ely.

We could have performed all the stepsin this sectionfor F = 3 and endedup
with the sameresult, only the a-parameterswould be a little di®eren, they are
stated below for completeness.

vl 1
1 25 63
-1 + +24 1 & F=3
% 28 1+ Cu= 1+ . (F=3)
1 45 21
=L + +80 | 1 5.19
A 5 T+Cu= 1repm o 7 (5-19)
1 21
a > i +16 ! O

T 112 1+ G = | 1+ ¢ ¢

wherewe just have chosento denotethe detunings¢ roas¢ , = ¢, ¢ 3= ¢ + ¢ »3,
and ¢ 4, = ¢ + ¢ »4. Note, red detuning still correspondsto positive ¢, and the
limits for ¢ ! 81 arethe sameasin (5.16) for F = 4.

Concluding this chapter we remind ourselhes of the approximations of the
Hamiltonian (5.18). We assumedo®-resonah interactions, i.e. there are no ab-
sorption e®ectsn our description. This led usto the adiabatic elimination which
is valid if optical beamsare far from saturating the optical transition. We made
no speci ¢ assumptionsabout the spin state of atoms or the polarization state of
light, and therefore the Hamiltonian is in generala good starting point for many
calculations involving what is essetially the Stark e®ect.
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CHAPTER 6

Propagation Equations

In Chap. 5 we derived an e®ective Hamiltonian for the o®-resonat interaction

of polarized laser light with an atomic spin ensenble. In this chapter we will

take these calculations one step further to derive actual equations of motion for
our interesting spin state operators Jy, J; and Stokesoperators S, S,. We start

out by deriving propagation equationsin generaland we will learn that theseare
in fact quite complicated. To couple collective spin operators to collective light

operators we need to perform the approximation that the higher order terms
proportional to a, of the Hamiltonian (5.18) can be neglected. Doing this we
arrive at the most important equationsof this chapter, Egs. (6.11-6.15). We will

then estimate the role of the higher order terms for our experimental purposes.
Likethe previous chapter, the derivations are somewhattechnical. To understand
the experiments of this thesis the results of Secs.6.2 and 6.3 are important.

6.1 General Propagation Equations

We shall be concernedwith the spin operators {\(z;t), {y(z;t), and f%(z;t) and
the Stokes operators $;(z;t), S,(z;t), and S,(z;t) where we cortin ue the nota-
tion of Chap. 5. For the spin operators we state the Heiserberg equations (e.g.
@, (z;t)=@ = 1=ih ¢ [,(z;t);H ) where we for a start take P to be the inter-

action Hamiltonian (5.18). Possiblemagnetic elds acting on the spin operators
can be added later. With help from the commutation rules of App. B.3 and



42 Chapter 6 - Propagation Equations

Eq. (C.18) we get

Chw0= sy, S B
+a; 28N+ I (5ci DD + Y]

@ c° 2 Nn

@f\y(zit) = 2A¢ 21{{ i &SI\ ) (6.2)
+az i 28+ DI + i zé/[rzry+ Ml g

O = o e A8+ D1 AT 1 63)

wherewe for brevity have left out the (z;t)-notation on all operators on the right
hand side. For the Stokes variables we can easily generalize Eg. (C.8) to be
directly applicableto Stoke operators

"o, C_@

@ @
Furthermore, we may in the following neglect e®ectsof retardation, that is we
assumethe speed of light c is in nite. Since we in Chap. 5 already restricted
oursehes to describing dynamics on a long time scaleby deriving an e®ective
Hamiltonian this does not imposestrong restrictions. Neglecting retardation is
mathematically equivalent to leave out the @@ term above. Then we get

8(z; 0=+ é(z t); ﬁ.m : (6.4)

@ 01y 2 n (o]

@BV = o5y, aSh+ a2 2SI+ M (6.5)
@ 01y 2 n o

@>@n = 4 ’2—1/ ialé i a2 625151 f¥] (6.6)
Ogen= 1m0 Bl 8 +BM . 6)

where we again leave out the (z;t)-notation on the right hand side. Equa-
tions (6.1-6.3) and (6.5-6.7) are coupled to ead other, and they are not even
closed. On the right hand side we seespin operators like e.g. {x{y + fy{% which
again from Heiserberg's equations will get its own time ewlution, and so on.
From here we can go into many di®ereri directions depending on the actual
physical system under consideration. For the rest of this chapter we special-
ize into di®eren relevant cases,and we will alsoin these connectionsgive some
physical interpretations to the equations above.

6.2 Probing a Macroscopic Ensemble of Orien ted
Spins

A simple and usefultool for characterizing an ensentble of oriented atomic spins
is the Faraday rotation of a linearly polarized laser beam propagating along
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the direction of atomic spin orientation. We assumethat a sample of spins are
oriented along the direction of light propagation, i.e. the z-axis, and we will
neglectquantum °uctuations for the momert. In this casethe only spin operator
with non-zero mean value in the equations of Sec.6.1 is [, in the propagation
equationsfor 8, and éy If a beamof light traversesa sampleof atoms of length
L we may show that the classicalvaluesof the Stokesoperators ewlve as

sout = S)i(n cos(Ak) i S)'/” sin(2ug); (6.8)
SO = S sin(2ue) + S} cos(2);
where the angle L& is given by (in radians)
ar°, 2%l .
=i g O (6.9)

If alinearly polarized beam of light is rotated by the angle , the Stokesvector
will be rotated 2u. Thus, in the above, s is the polarization rotation caused
by the spin orientation along the direction of light propagation. The equations
are valid for both F = 3 and F = 4 in the cesiumground state, wherea; ¥ 1
de ned in Eqg. (5.19) or (5.16) is dependingon F. ° is the FWHM line width of
the excited 6P;-, state, , is the optical wave length of the transition, %zis the
atomic density, and ¢ is the optical detuning (red being positive), L is the sample
length, and HYi is the expectation value of the total angular momertum along
the direction of light propagation of a single atom in the sample. We will seein
Chap. 7 that this polarization rotation is a very useful tool for characterizing the
spin state of an atomic ensenble.

6.3 Probing Transverse Spin Comp onents

The most essetial physical setting in this thesisis the situation of a macroscopic,
oriented sample along the x-direction with an o®-resonah probe propagating in
the z-direction. In this casethe probe measuresa transverse spin componert
which is interesting to us at the level of quantum °uctuations, as mentioned in
the introductory Chap. 2.

In this sectionwe neglectthe higher order e®ectwf the atom/ligh t interaction,
i.e. we assumea, = 0 in the equations of Sec.6.1. We have chosenthe x-axis to
coincidewith the direction of spin orientation, and we shall alsoassumea linearly
polarized probe along the x-direction (which actually is not strictly important,
we could have chosenany direction). The interaction will practically be suc that
the state of light and the state of atoms do not deviate much from this situation,
and we may describe the x-componerts of the spin j and the Stokesoperator S
by constart c-numbers,i.e. 8§, ! S, andfx ! jx. Under theseassumptionswe
have a zero on the right hand side of Egs. (6.1, 6.3, 6.5, 6.7). Equations (6.2)
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and (6.6) yield

Q@ c° ,? .

=Nz = | > ¢y S, (2 )j x;

((@@ ne (6.10)
@I BV 1 g ZASTE:

Sincewe herehave j and Sk constart in the whole sampleof atoms we can easily
integrate over z to get equationsfor the collective properties of tﬂe sample. We
dene the collective spin variable (with capital letter J) J = OL Ik (z;t)¥2Adz
and so on for y; z-componerts. We also note that with @5,(z;t)=@ = 0 we may
write c¢S,(z;t) = SM(t) wherethe latter is the Stokesvector S, at the beginning
of the samplenormalized to photons per second. Summarizing the above we get
equations

&)y = &N(t)+ asJy(t); (6.11)
) = §); (6.12)
250 = asro: (6.13)
gfz(t) = 0 (6.14)

i 4;¢ £4a1: (6.15)

The Stokesoperator Sy is classical,and éy §, arethe guantum variables of the
light polarization state normalized to photons per second. For atoms with Jy
being classicalwe have quantum variables J‘y and J; normalized such that they
describe the total spin of all atoms in the sample,i.e. Jx is of the order of the
number of atoms in the sample. The interaction parameter a depends on the
FWHM line width ° of the excited state 6P3-,, the optical wave length |, the
detuning ¢ (red being positive), the beam crosssection A, and the parameter
a; ¥ 1 dened in Eqg. (5.19) or (5.16). Physically, a is the rotation angle of
the macroscopicspin J around the z-axis per circularly polarized photon, or the
rotation anglein Stokesvector spaceof S around the z-axis per unit of angular
momertum along the z-axis. The above equations are the cornerstone for all
experiments in this thesis. We remark that they arise from the “rst order terms
proportional to a; in the equations of Sec.6.1. The term aS,J;(t) in Eq. (6.11)
enablesus to read out properties of the spin state to the light. At the sametime
the term aJ, S (t) of Eq. (6.13) feedsnoise badk to the spins. We often call the
latter term for the back action term.
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6.4 Inclusion of Higher Order Terms

Now, let us turn to the higher order terms proportional to a, of the equation
in Sec.6.1. For simplicity, we will assumethat the atoms are oriented almost
perfectly along the x-axis. This is in generalthe casefor our experiments. We
start out by an analysisof the classicalmeanvalues. In this casethe only non-zero
spin operatogs on the right hand side of the equationsin Sec.6.1are hf\i %28 F
and 12 % %F(F %), seeEq. (B.15). The e®ectof the % j [ terms can be
understood by considering the propagatiorboj a beam of light which is initially

linearly polarized along e+ss = (ex + €y)= 2. Then the most important terms
of Egs. (6.6) and (6.7) can be written

géy(z;t) = +k$&,(z;t) and géz(z;t) = i k§,(z;1)

3201/22
* _F(2F i 1)
ac 2GR L)

(6.16)

with k = j

where Eq. (B.15) was usedto evaluate 2 f‘f, The solution of these equations
is simply

§ (z;1) = +$,(0;1) cogkz) + S,(0;1) sin(kz);

& (z:t) = i §,(0;1)sin(kz) + &,(0;1) cogkz): (6.17)

This is nothing more than the birefringence of the atomic sample which is ori-

erted along the x-axis (with the x- and y-axesas major axes). The di®erence
in phaseshift experiencedby x- and y-photons turns linear polarization into cir-

cular polarization and vice versa. This is a complication to the simple physical

setup described in Sec.2.3 where a strong linearly polarized beam of light passes
through the atomic samplewith constart $,-componert and the éy-componert

only reading out the spin componert J,. But there is more to this, the term

éy(f\f i f‘f,) in Eq. (6.3) will changethe mean value of {%,. This is just another
way of stating, that if 8, is subject to changesthese will also a®ect{}, since
the projection of the total angular momertum along z must be consened. Also,

in Eq. (6.17) if &, in the propagation builds up a considerablenon-zero mean
value the terms proportional to S, in Egs. (6.1) and (6.2) will start rotating the

macroscopicspin around the z-axis. This again a®ects[? i f‘§ which started it all.

We seethe complicated structure of the interaction now and we really wish to

minimize these e®ects.To characterize the strength of these e®ectsthe relevant

parameter is kL where k is given in Eq. (6.16) and L = 3:0cm is the length of

our atomic samples. For F = 4 we can corveniertly relate kL to pyr de ned in

Eq. (6.9) by

_ Y48, .
kL = 9Oalp,c[deg:j]. (6.18)
For a typical detuning ¢ = j 1GHz and a corresponding typical large value of

Me ¥ 30degwe get kL ¥ 7% which we haveto keepin mind. kL will decreasewith
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detuning and with atomic density, it is an atomic property and is independert
on the power of the laser.

The term 2 j f‘§ describes alignment in the xy-basis. In the equations of
Sec.6.1 there are also spin terms {\{y + {y{% which in a completely analogous
way describe the alignment along the directions rotated by § 45* in the xy-plane.
Thesewill have non-zero mean if we chooseto orient atoms along either of the
§ 45*-directions instead of the x-direction.

To sum up sofar, for mean valueswe understand all terms on the right hand
side of Egs. (6.5-6.7), terms including a; give rise to the Faraday e®ectcaused
by circular birefringence. The terms including a, are responsible for the linear
birefringence.

But equations are also valid for °uctuations, quantum or classical. For our
experiments we should keepin mind that with our constarnt bias magnetic "eld
and the rotating frame, seeSec.4.3, we should concerirate on frequency compo-
nents around the Larmor frequency- for what regardsfy, %, éy and S,. For
instance, sincef? i fﬁ VaF(F j %) primarily hasa DC componert, it is the AC
componerts of éy and §, which couple to eac other in Egs. (6.6) and (6.7).
Similarly, from the fact that Eq. (B.13) consistsof rst o®-diagonalelemerts,
we know that P {y + {yfx primarily has frequency componerts at -. Then it is
the DC componert of &, and AC componert of §y that contribute to the time
ewlution of { in Eqg. (6.3).

Taking these considerationsinto accourt we concludethat DC terms of the
time ewolution of  aresmall. Thusfor a sampleoriented alongthe x-direction we
have a pretty stable system. What regardsEq. (6.2) the spin operator {\ % + f%{y
is small and has frequency componerts at 2-. This must couple to frequency
componerts at - or 3- of §y for the product to cortribute at - in the time
ewolution of {y. AC componerts of §y are small independert of the direction of
probe polarization, sowe neglectthe last term of Eq. (6.2).

Now, turn to the last term of Eq. (6.3). Sincef% i [¥ is a DC term, the
AC componerts of éy at - will feedinto [%,. This term can have a considerable
magnitude, we wish to compareit to our favorite term which is the a; S, f} back
action term of Eq. (6.2). When we measurenoise properties we have to square
the °uctuations, and the correct comparisonbetweenthe unwanted pile up in [
and the wanted bad action noise (BAN) in [y is
. [V [P .

Bad pile up _ aoF 1P 2 No!se(éy): (6.19)

BAN ar  Noisg$,)

For our typical valuesof detuning we have a,=a; ¥4 10' 2 and the above tells us
that (Bad pile up)/BAN ¥ 0:02 ¢Noisg(S,)=Noisg(S;) for F = 4. If our laser
beam is polarized along the x- or y-axis with a clean linear polarization, the
noise of éy and §, at the frequency- will most likely both be limited by shot
noise, i.e. by quantum noise (amplitude noise of the laser doesnot feed into §y
and S, in the caseof clean linear polarization). In this casethe unwanted noise
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only cortributes ¥4 2% of the total noise pile up. But if we choose arbitrary
polarization directions in the xy-plane, the §y—componert will have non-zero
mean value, and the °uctuations at - will essetially be the amplitude noise of
the laser at -. In this case,to keepthe last term of Eq. (6.3) from piling up
extra noiserequiresthe laserintensity to be shot noiselimited at - (which is a
more dixcult condition to meet than clean linear polarization). We thus have
one motivation for choosing the laserto be polarized along the x- or y-direction
and not in between.

Now, let usturn to the f\{% + [%{x term of Eqg. (6.2) and the {X{y + fy{% term
of Eqg. (6.3). Thesespin operators have frequencycomponerts at - and we must
then consider the DC componerts of (28, + A) and 4S,, respectively. In the
following we show, that the e®ectof theseterms changethe Larmor frequency-
by a small amourt, and we wish to calculate this for di®erer directions of the
linearly polarized laser.

To this end, assumethat the laserhas photon °ux A(t) and is polarized along
e; = cos@®)e, + sin(®)ey. Then we have mean values
D E D E
c(28«(z;t) + Az;t)) = (cos2®)+ 1)A(t) and  4cS(z;t) = 2co2®)A(t):

(6.20)
Furthermore, since we assumea strong orientation along the x-axis we may re-
late the spin operators {%fy + Y% and fx{% + %I\ to {y and [, by Egs. (B.13)
and (B.14). After somealgebrawe deducethat the time evolution of {y, and [}

become ' .
gf\y(Z;t) =i - +- s%?” Nzt + 0 (6.21)
H 1
gf\z(z;t) =+ - +- 5200%52(2(@) N(zit) + o (6.22)

wherethe dots remind usthat there are more terms in Egs. (6.2) and (6.3) which
we leave out for brevity. Above - is the magnetic eld cortribution and - s is a
Stark induced cortribution normalized such that - g is the extra corntribution for
®= 0, i.e. for light polarization parallel to the spin orientation along the x-axis.
We have - s given by (in Hertz)

o 2
- = hd a A H 3/ -
s[HZ] 16/2A¢ CA(t) ¢2(2F | 1)3%A*: (6.23)
Now, if ® 6 0 the parerthesesin Egs. (6.21) and (6.22) are unequal, but for
- A - s we may easily show that the e®ective Larmor frequency becomesthe
averageof the two parerntheses. This amourts to

(2F | L)%~

"% f) 6L+ 3c0428)) L2 (6.24)

16¥2A¢
where ¥4« = §1 for H\i = § F. We seethe Stark cortribution to the Larmor

frequency acts in opposite directions for oppositely oriented spin samples. In-
serting typical valuesfor the detuning ¢ = 1GHz and for the laser intensity of

- e®[Hz] = '[HZ ]+
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1mW/cm 2 we obtain a shift in Larmor frequency of 160Hz for ® = 0. For two
oppositely oriented spin samplesthe di®erencein Larmor frequency under these
conditions is 320Hz. This can be a problem, but the shift is reducedto zero
if ® = 547*. Thus we have a motivation for choosing polarization directions
di®erert from the x- or y-directions. But this opposesour desireto be polarized
exactly along the x- or y-direction where pile up of laser noiseis small according
to EqQ. (6.19). We shall study this Stark shift experimentally in Sec.7.6 where
we also present an alternativ e calculation of the changein Larmor frequency

To concludethis section, we cannot easily solve analytically the equations of
motion with the higher order terms proportional to a, included. The collective
variablesloosetheir meaningin this case. The mostimportant e®ectsnclude the
mixing (6.17) of éy and 8, by linear birefringence, the possiblepile up of laser
noise discussedaround Eq. (6.19), and the shift in Larmor frequency discussed
in Eq. (6.24). The §,, §, mixing has strength parametrized by kL ¥ 7% in the
typical case. The laser noise pile up will probably be a few percert for x- or
y-polarized probe beam. The e®ectsof the Stark shifted Larmor frequency will
be presen for x- or y-polarization and absen for ® = 54:7%.

We alsorepeat the fact that Egs. (6.1-6.3) and (6.5-6.7) are not closed,but for
awell oriented samplewith H\i ¥ 8 F and with the approximations in Egs. (B.12-
B.14) we do have a closedset of linearly coupled equations. Even in this casean
analytical solution will be very cumbersome. We shall not pursue any solution
in this thesis.
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CHAPTER 7/

Atomic State Characterization

In this chapter we dewvelop methods for the characterization of the atomic spin
states that occur in di®erert cortexts in our experiments. We have sewral mo-
tivations for this; we would like to know the number of atoms in our sample
(especially in order to ched scalingsof noiseaswe will discussin Sec.9.5), know
the degreeof orientation to tell whether we are in the coheren spin state or close
to it, measurethe decoherenceime of the state for estimating the life time of
interesting quantum states. We are able to addressall the above questions. The
cortents of this chapter are published in [VI11].

We start out with somenotation. We will considera samplewith N atomsin
one hyper ne ground state F of cesiumand describe the spin state with density
operators %; given by

IR SONEE IR\
%=y A=y i (7.1)
k=1 k=1
wherei;j = i F;j F+1;:::;F, the sumis doneover all individual atomsand jj i,
refer to the magnetic sub-level with mg = j of the k'th atom. With the x-axis

asquantization axis we may expressthe total macroscopicangular momertum J



50 Chapter 7 - Atomic State Chara cteriza tion

(@)

E/h [GHZz]
o

= )
—
D E D E ]
i)/ S /5 20

00 02 04 06 08 10
B [Tesla]

Figure 7.1: (a) The setup for magneto-optical resonance.A constart magnetic
“eld Bpias is applied parallel to the atomic spin orientation along the x-axis. An

RF-magnetic “eld is applied along the y-axis, and the J, componert of the spin

is measuredby a probe laser propagating along z. Magnetic resonancee®ects
are read out optically by the probe in the photo current i(t). (b) The energy
levels of the magnetic sub-lewelsof the F = 3 and F = 4 ground statesin cesium
accordingto Eq. (F.2). We operate at Bypjas ¥4 1Gausswhich is far into the lower
linear regime where quadratic e®ectsare small.

of the atoms in the hyper ne state F as

X

=N m%um; (7.2a)
m
X1 c(F:m

Jy=N ( 2 )f%m;m + Yom +1 0 (7.2b)
m=j F
X1 c(F:m

J\z =N (2; )f%*nﬂ;m i Ymm+10; (7.2¢c)
m=ij F

where C(F;m) = P F(F+ 1)j m(m+ 1), seeEgs. (B.9-B.11). In addition to
the number of atoms N we seethat the macroscopicspin Jy is described by the
diagonal terms %, and the quantum variables J\y and J, are described by the
‘rst o®-diagonalterms %,.m +1 . We needto characterize eat of the relevant
density operators in detail in terms of magnitude and decoherencdime.

7.1 The Magneto-Optical Resonance Metho d

We will usethe so-calledmagneto-optical resonanceto investigate the spin state
of atoms, the basic setup is shown in Fig. 7.1(a). Atoms are placed in an ex-
ternal, constart magnetic eld Byiss asdiscussedin Sec.4.3. Applying another
external radio frequency (RF) magnetic eld we may induce transitions between
the magnetic sub-lewels if the RF is in resonancewith the level splitting. More
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exactly, aswe will derive below, the RF-magnetic "eld couplesto and drivesthe
coherence$mm +1 and ¥, +1-m . According to Eq. (7.2c) this will lead to a mod-
ulation of the spin componert J,. This modulation can be read out optically
by a probe laser, i.e. the photo current i(t) of the detector sgiupgof Fig. 7.1(a),
which measuresgy, will be proportional to the meanvalue J, according to
Eq. (6.11).

The energy of the magnetic sub-lewels of an atom in an external magnetic
“eld B canbe calculated and is given without approximation in Eg. (F.2). These
levels are shawn in Fig. 7.1(b). We seethat for low magnetic "elds the energy
dependenceon the magnetic eld strength is linear with small corrections caused
by the presenceof the hyper ne splitting. In our experiments the magnetic "eld
strength Byss is around 1 Gausswhich meansthat non-linear correctionsare very
small. We shall still include them to secondorder, which givesthe Hamiltonian
for a single atom with total angular momertum |

B = ge1sj ¢B + O(B?); (7.3)

where 1 g is the Bohr magneton and the gr-factor is de ned in Egs. (F.4)
and (F.5). The bias magnetic eld along the x-axis contributes gr ! gJxBpias +
O(BZ,s) to the Hamiltonian while the RF-magnetic "eld directed alongthe y-axis
cortributes gr? BJ'\ijRFj cog! t + A) where the RF-magnetic "eld is character-
ized by the amplitude jBggj, frequency! , and phaseA. Retaining only the linear
term is suzcient here. The Hamiltonian may now be written

X
B = h! m ¢%%nm
m=j F ¢ (74)
1 l sl ol il
+gF4B NBree 'l pBEE
where s = f} 8§ ify and Brr = jBgrej€ A s the complex amplitude. The

“rst term is the bias magnetic "eld cortribution where we take the secondorder
corrections into accourt by explicitly stating the energylevels k! ,, of the m'th
sub-level. The secondorder correction is calculated in Eqg. (F.7) and will be
discussedn more detail in the next section. The secondterm is the RF-magnetic
“eld contribution in the rotating wave approximation. We may wish to write the
Hamiltonian ertirely in terms of the density operators %5 :

x
H = Al m hm
mE (7.5)
gets XU it
+ T C(F,m)%nﬂ ‘m Brre "+ h.c.

m=j F

which follows directly from Egs. (7.2b) and (7.2c). The equations of motion are
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now determined by

h i
@3 1
@y _ L . + . .
@ - in % ;0 + decay terms; (7.6)
where the “rst term is the coheren ewlution of the system, and the interaction
with the ernvironment will be put in by hand as decay terms.

We will now solve Egs. (7.5) and (7.6), and to illuminate the method for solv-
ing theseequations,we will pick out a singleexampleand work it out thoroughly.
The time derivative of e.g. %, is

h i
@12 _ 1
2= = %l =209
@ ih 42 [ 42
ii(t2i 11)%2i i=20%>

(7.7)

vl |
+ 9F 8 PC(Fi )% i %ilBree
4P’] a

+ [C(F;0)%2i C(F;2)%3]Bae€"" ;

wherewe have just inserted the Hamiltonian (7.5) into (7.6) and addedthe decay
term, j j =2 ¢%1,. We will restrict ourselvesto a description of spinsin the case
where J,; 3, ¢ Jy, i.e. the angle p that the spins deviate from being oriented
along the z-axis is much lessthan unity. From Egs. (7.2a-7.2c) the order of
magnitude canroughly be written asO(%n+1 :m ) ¥4 HIO(¥m:m ), and following the
samelines O(¥%n+2 :m ) ¥4 20O (¥m:m ). It isthenjustied to neglectthe coherences
%2 and %43 in the above equation. For brevity wewill de' ne! ,; = ! ,j ! 1, which
is the frequency corresponding to the transition from mg = 2to mg = 1. This
frequency is the Larmor frequency which typically has values around 325kHz.
This is fast comparedto the inversetime scalefor dynamical ewolution of the
spin state which never exceedslkHz. Sincethe RF-magnetic "eld frequency!
will be in the vicinity of ! 5; it will be conveniert to de ne the slowly varying
operators

% =%t (7.8)
Using this de nition, Eq. (7.7) will turn into

%: ([0 tarli §=2)%2 (7.9)

i 1
+ B C(F DBre 92 i Yl

The constart | will describe the decay of the transversespin componerts. With
the small angleassumptionp ¢, 1the population di®erencg®s,i %11) will not be
a®ectedby the RF-magnetic eld. In addition, the typical life time of populations
is T; ¥4200j 300msand we can safely assume(?, i %11) to be constart. Any
decays of populations can even be compensatedby external pumping processes.
With an external pumping processwe may let transients decay (takestime 1=j)
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and we are left with the steady state solution for the operator %4,. By setting
@42=@= 0 in the above equation we get

igr 1 8Bre C(F; 1) " !
A et i 'arli i=2)

a0 = | [P221 %21l (7.10)

This method applies to all density operators %m.m +1, and substituting into
Egs. (7.2b) and (7.2c) we get

)

igr2BreN X T [F(F +1)i m(m+ 1)]¢e" !
[%‘nﬂ m+1 i %‘n;m] ;

4k m:iFi(!m+1;mi )i im+m=2

Jy = Re

(7.11a)
)

$ = Im( igetgBreN X U [F(F + 1) m(m+ 1)]¢e" ¢

4h m:iFi(!m+1;mi )i im+1m=2

[Pm+rm+1 i Fm ]
(7.11b)

These equations can be interpreted as a number (2F) of two-level systemsthat
all interact with the driving RF-magnetic "eld. Two adjacert magnetic sub-
levelsm and m + 1 act asonetwo-level atom with the usual Lorentzian response
(resonancefrequency ! m+1.m and line width j m+1.m FWHM). Each two-level
system does not respond with exactly the sameweight which is re°ected in the
factor F(F + 1) j m(m + 1). All the resonancesadd up cohererily to give the
overall responseof the spin state to the RF-magnetic "eld. Note, that J‘y and J,
oscillate at the driving frequency! and not the \natural" frequencies! m+1 :m.
This is the steady state behavior with damped transients. In Sec.7.5 we will
commert on non-steady state behavior of the spin system.

We conclude this section with some commerts which are relevant for our
particular experimertal setup. We may wgite the photo current of the detector

setup shawn in Fig. 7.1(a) asi(t) = ®¢ J, = ®UmfA(t)g where®is a constart

depending on experimental parameters,and A(t) re°ects the mean value of the
curly bracket of Eq. (7.11b). We know from this equation that A(t) =~ A(! )e"
will possesonly a single frequency componert, namely the local oscillator fre-
guency! driving the transversespins J\y and J;, away from zero. The amplitude
of this frequency componert is experimentally measuredby inserting the photo
current i(t) into a lock-in ampli'er and decomposing the signal into sine and
cosinecomponerts:

i(t) = ®¢ImfA(! )e' g
= ®¢(RefA(! )gsin(! t) + ImfA(! )gcoq! 1)) : (7.12)
We set the lock-ampli'er to give the sum of the squared amplitudes of the sine

and cosinecomponerts which in our casewill be exactly ®jA(! )j?>. We shall call
this signal our magneto-opti@al resonane signal at frequency! (MORS(!) in
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short). Combining the above with Eq. (7.11b) and ignoring irrelevant constarts
we nd

MORS(!) = COﬂSt¢§N X! [F(F+1)i m(m+ 1)]

m=j F

Y

TUPP D rara—— PWh+tm+1 i Ygm i

(7.13)
We seethat the signal dependson the number of atoms N in the relevant hyper-
“ne state F, the resonancefrequencies! .1 .m, the transversespin deca rates
i m+1:m, and the populations ,.m . All these parametersare of importance for

us.

7.2 Spin State Mo deling

In the previous section we derived how the spin J responds to an external RF-
magnetic "eld, our motivation is to usethis knowledgeto characterize the spin
state, i.e. we wish to deduceparameterslike #m.m , i m+1-.m and soon. Now, for
cesiumin the e.g.F = 4 hyper ne ground state there are nine populations ¥m.m
and eight line widths i m+1.m together with the resonancefrequencies.To 't an
experimentally measuredspectrum (seee.g. Fig. 7.2(b)) to all these parameters
will be very hard and in the following we will develop a model to signi cantly
reduce the number of free parameters. We will just tailor a model and the
justi cation for this model will be an experimental test.

Let us consider a casewhere we wish to orient all atomic spins along the
x-direction, i.e. attempt to put many atoms into the m = F sub-state. This can
be done experimentally by illuminating the atomswith circularly polarized light,
aswas described in Sec.4.5. It is then corveniert to de ne the orientation p as
an order of merit

sz¢h’)’ i—J—X'
- fm T NE-
|

1
p= = (7.14)
Note, that with this de nition p= 1if all atoms are in the extreme m = F sub-
level, and p = O for a completely unpolarized sample with %,., = 1=2F + 1)
for all m. We try to let the orientation p be the only parameter d@cribingthe
relationship betweenthe nine populations %m.m . With the condition  %qm = 1
we have thus reducedeight free parametersto a single one.

Now, we describe ensenbles of atoms and given p we will assumethat the
spin state maximizesthe ertropy $ = j Tr(?4n%). To nd the individual Yn:m
we usethe method of Lagrange multipliers. We must solve

__@
@f%n;m i

3

X X

) Wmi= el li®¢el M (7.15)
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We now just needto adjust ® and ~ in order that Tr(?) = 1 and p is as desired.
Doing this is more or lessa computational problem and in principle not ditcult.
For the physical understanding we just need to remenber that we can write
Mom | = Pepi2Fi ™ where2 = e is a parameterwhich is a function of p. This
can go directly into Eq. (7.13).

For the eight line widths j m+1.m in the caseof cesiumwe will make a model
with two free parameters. First, a common line width i com IS assignedto all
transitions independert of m. The physical causefor this type of decay could
be magnetic "eld inhomogeneities, collisions, and loss mechanisms common to
all atoms. In addition, if we wish to create a well oriented sample with m ap-
proaching F we will needto illuminate the atoms with resonan circularly po-
larized light. In our casethis is the 894nm 6S,-,;F = 4 to 6P;_,;F°= 4 line.
This light causesexcitations from the atomic ground sub-level m with a rate
°m/ jhkm; 114 m+ 1ij2= (4; m)(5+ m)=40, where the secondterm is the
squareof Clebsth-Gordan coe+cients. For a magnetic transition betweenground
sub-levels m and m + 1 the resonari pumping light will corntribute to the line
broadening proportional t0 °y + °m+1 . Thus we de ne the width j ,ump caused
by the optical pumping processsuc that

19; 2mj m?
im+1;m = icom t ipump %; (7.16)

where the normalization is such that for the m = 3! m = 4 transition we have
i4,3= icom¥ ipump-
Finally, we must have the resonan frequenciesas parametersin our model.
We will write this asa certral frequency! cener and a splitting ! spic sud that
M 1‘IT
Pcenter + !spit M+ > : (7.17)

! m+l:m =

From the quadratic Zeemane®ectwe should have ! spir = 2¥4° oz (seeEq. (F.7))
but we keepit asa free parameter sincein practice this splitting will alsodepend
on the Stark shifts by the probe laser, seeSec.7.6.

To sum up, a possibledescription of the ground spin state involvesthe total
spin Jx and the orientation p together with the line widths j com and j pump , and
the frequencies! center @and ! spir . An equivalent but computationally easierway
to represen J; and p is to usethe number of atoms Ng = N % i of atomsin
m = F asone parameter and the parameter 2 such that the population N, can
be expressedas Ny, = N M, i = Ng2(Fi M),

7.3 Experimental Test of the Mo deling

Let us make an experimental test of the magneto-optical resonancemethod and
the models discussedin Sec.7.2. To this end we setup our lasersas shown in
Fig. 7.2(a). In the following all lasersrun cw. The optical pump and repump
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Figure 7.2: (a) The experimental setup for testing the magneto-optical resonance
method and the spin state modeling. In addition to the situation discussedin
Fig. 7.1(a) another linearly polarizedlaser(the DC-Faraday probe) is propagating
parallel to the macroscopicspin polarization createdby optical pump lasersalong
the x-axis. The MORS signal is recorded in the photo current i(t) while the
detectors D1 and D2 can tell about the polarization rotation ppc of the DC-
Faraday probe. (b) An experimental spectrum (dots) of magnetic transitions
among the nine sub-lewels of the F = 4 ground state in cesium. The solid
line is a 't to Eq. (7.13) using the model described in Sec.7.2. The many
peakstells us that atoms are distributed amongall nine levels resulting in a low
orientation p = 0:346. The line width 9.4Hz is a direct measureof the decay
rate of spin coherence.According to Eg. (F.5) the corresponding F = 3 signal is
approximately 1kHz away and doesnot interfere here.

lasersare tuned as described in Sec.4.1 and their polarization can be adjusted
at will. The probe laseris split into two parts, one measuringthe transversespin
componert J; along the z-axis and the other one (called the DC-Faraday probe)
measuring the longitudinal, macroscopicspin componert Jy along the x-axis.
The detuning of the probe laseris ¢ = j 1GHz.

The rotation ppc of the DC-Faraday probe is described by Eq. (6.9) and is
directly proportional to the macroscopicspin (7.2a). The probe measuringJ; will
leadto the MORS signalde ned in Eqg. (7.13). An exampleof a spectrum is shavn
in Fig. 7.2(b). In this casethe optical pump laseris o® and the repump laser
has elliptical polarization which is relatively far from being circular. Here we see
that there are eight peakscorresponding to the eight possibletransitions between
adjacert levelsamongthe nine magnetic sub-lewelsin the F = 4 hyper ne state.
The dots are experimental points and the solid line is a t to the model (7.13)
With Jx, P, i com. ! center,» @aNd ! spjir asfree parameters. j pump IS setto zero(since
the optical pump laseris 0®). We seethat the solid line matchesthe experimental
points very well. Note, that p = 0:346is the only parameter really describingthe
relative strength of the individual peaks,while the other parametersare common
to all peaks. This givesstrong support to the model described by Eq. (7.15) with
Wom i = Pepi2Fi ™ With | = 242 (experimentally we prefer Hertz and not
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Figure 7.3: Two examplesof experimental (dots) and tted (solid line) traces.
The left graph was obtained with pure ¥spolarized repump laser and no optical
pumping. On the right graph a small amount of optical pumping light is added
giving rise to a non-zeroj ,ump . One can, with a careful look, seethat the lines
now have di®erent widths. Note also, that the height has grown by a factor of
three comparedto the graph on the left.

radians per second)the certer frequencyis °center ¥a 325250Hzwhich predicts
a quadratic Zeeman splitting of 23Hz according to Eqg. (F.7). The obsened
splitting °spit = 22Hz is very close, the small deviation is due to Stark shifts
from the laser beams. For the line width we 'nd j com = 9:4Hz (FWHM). This
corresponds to a life time of the spin coherenceof T, = 34ms and we seethat
the experimental spectrum supports the model that all eight lines have the same
width. Finally, the 't to the model (7.13) also givesa value of J, = 0:122which
is in arbitrary units becausewe do not know the constart in front of Eq. (7.13).

Let uslook at two other examples. First, with the settings asdiscussedabove
(and the optical pump laser still o®) we adjust the polarization of the repump
laser to be as circularly polarized as experimentally possible. This gives the
spectrum shown in Fig. 7.3(a). Now the spectrum is much more asymmetric and
the 't givesp = 0:823. This single parameter still seemsto describe the shape
with good accuracy The third examplewe will shaw is seenin Fig. 7.3(b). Here
the situation is as before but now with a weak optical pump presen with pure
circular polarization. We obsene an additional broadening of the left most peak
by i pump = 5:5Hz and we also note that the secondpeak seemsmuch broader
(should have an additional broadeningby 15.1Hzaccordingto Eqg. (7.16)). Since
the 't and the experimental points follow ead other very well, we get support
for the modeling of j pump . The orientation p = 0:967 shaws that we are very
closeto having all atoms in mg = 4 with only a moderate amourt of optical
pumping light.

In the three examplesdescribed above and more spectra of the same kind
we get a tted value for the macroscopicspin Jx. Now, with the DC-Faraday
rotation signal ppc giving an independert measureof Jx we may compare the
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“tted Jy with ppc to get another consistencyched of the model. This is shown
in Fig. 7.4(a) where we plot the tted Jy (in arbitrary units) as a function of
Uoc - The lowest points are takenwith the repump laseronly and varying repump
polarization. The upper eight points are takenwith purely circular optical pump
of increasing intensity in addition to a purely circular repump laser. We seea
very nice agreemen betweenthe tted and the directly measuredvalues giving
strong support to both the derivations leading to Eq. (7.13) and the modeling of
the spin state described in Sec.7.2.

Let us concludethis sectionby noting that we developed a very simple model
describing the spin state of atoms in the presenceof optical pump and repump
lasers. The parameter2 = e de ned in the discussionaround Eq. (7.15) is relying
on \equilibrium physics" (the derivation includes maximizing the entropy). It is
pure luck that this simple model is suxcient, our experiencetell us that a long
Ty is required to obsene this. We indeed have seenbad vapour cells for which
this model doesnot hold, but this is no problem aslong aswe can choosea good
vapour cell and test it. In the caseof well oriented sampleslike Fig. 7.3(b) we can
of coursenot say whether the model is good for the extreme magnetic sub-lewels
around mg = 4 where the population must be exponertially small according
to the model. But in this casethe spin state is clearly de ned by only a few
magnetic sub-lewels around mg = 4 and everything is ne anyway. With these
techniques as a starting point we may turn o®the pumping lasersand we are
left with a long lived and well characterized spin state for further experimental
investigation.

7.4 Unresolv ed Lines

The spectra shown in the previous section have been more or lesswell resolved
which enabledus to directly determine the orientation p. Now, how much infor-
mation can we extract if the line widths are much broader than the quadratic
Zeemansplitting ! spir ? In this caseit will be hard to obsene asymmetry in the
spectrum like e.g. Figs. 7.3.

First, assumethat all atoms are subject to decoherencewith the samerate
described by j com A ! spit and decay from pumping light is a small cortribution.
In this approximation we setj yump = ! spit = 0 and Eq. (7.13) reducesto

MP%n:m
i(!Oi !)+ i com

MORS(! ) = const¢-2N

2
— 1 ji?; (7.18)

where!l g = ! n41.m for all m. We seethat in this casethe spectrum will be
a single Lorentzian the size of which is only depending on J,. In this casethe
independert measurefrom the DC-Faraday probe will only cortribute exactly
the sameinformation and we will not be able to deducethe orientation p, e.g.we
cannot tell the di®erencebetween having N = 10?2, p = 1 and N = 2 ¢10'?,
p= 0:5.
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Figure 7.4: (a) Consistencyched of the models. Fits to di®erent spectra give
an estimate of J4. This canbe compareddirectly to the independertly measured
DC-Faraday rotation signal ypc which is proportional to J,. Weindeedobsene a
straight line through the origin. Note, the model description %,.m i / 2™ proved
to be lessaccurate for the lowest four points, but by coincidencethe points still

't well. (b) The interdependenceof p, Jx and j pump in the limit where j yump

dominates both the common width j ;o and the quadratic Zeeman splitting

Pspiit . Jx;0 @nd j opt;0 re°ect the valuesat p = 1. If we can measuree.g. Jy

independertly with an accuracy of 2% the orientation can be de ned within 1%
in the example shown.

On the other hand, if j pump dominates j com and ! sy we will get a signal
that depends on the internal atomic spin state. The reasonfor this is the fact
that di®erert resonancelines have di®erert line widths accordingto Eq. (7.16).
To examinethis approximation we setj com = ! spit = O andtry to t the rest of
the parametersto a spectrum which is a perfect Lorentzian. The correct "tting
parameters of coursehave p = 1 and j ,ump €qual to the Lorentzian width but
in practical life other setsof parameterswill also t the spectrum to an extent
which onewould 'nd reasonable.We nd that orientations in the range p = 0:9
to p= 1all 't the perfect Lorentzian pretty well. We now X p to a value in
this range and make a t of the Lorentzian. The resulting valuesof J, and j opt
are shown in Fig. 7.4(b). We seethat if we can estimate one of the parameters
Jx Or j opt independertly we should be able to calculate the orientation p. For
instance, a measuremen of J, (by the DC-Faraday probe) to an accuracy of 2%
will "x the orientation p to 1%. Keeping track of the optical pump power could
lead to an estimate of j o5 and this could also help making bondson p. One only
needsto have one x point, e.g.if one knows that we have p = 1 perfectly in one
case,or if one can reduce j pump t0 the point where the spectral lines become
resolved and a calibration like Fig. 7.4(a) can be performed.
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7.5 Pulsed Exp eriments

All previous derivations and measuremets in this chapter have beencarried out
in cw settings, i.e. Egs. (7.11a) and (7.11b) assumeconstart valuesof frequency
I and decy rates j m+1:m. This is indeed valid if lasersare running cw and if
we scanthe frequency! slowly enough. But someexperiments must be carried
out in a setting with pulsed lasers, e.g. one might wish to prepare the spin
state in the maximally oriented state F = 4, mg = 4 by illuminating atoms
by a pulse of resonan, circularly polarized laser light, seee.g. the creation of
entanglemert in Chaps. 9 and 10. For the magneto-optical resonancemethod
to be useful in such experiments it must be utilized in the correct experimertal
conditions which now meanstime varying decay rates j m+1.m. In this section
we outline the extensionsinto the pulsedregimesand discussthe applicability of
the magneto-optical resonancemethod for characterization of spin states under
these circumstances.

We assumefor simplicity that atoms are pumped to the F = 4, mg = 4
state to an extent that we only needto considertransitions betweenmg = 3 and
me = 4. The extensionto all levelsshould be straightforward (but cumbersome).
For thesetwo levels we may write Eq. (7.9) as

& . i~

g = (¢ 1 i =2)%a+ A i Yol (7.19)
where ¢ = ! j 1,43 and A = gt gBrr C(F;3)=4h. We assumeasin Sec.7.1
that the populations %4 and %3 can be treated as constarts corresponding to
small angle deviations from the x-axis. Then the solution of the above equation
is straightforward

Yaa(t) = ¥aa(0)el'® 1172
iA
i¢cii=2

[Pasi Paa] 1j el®ii=at . (7.20)

i
This solution starts out with 344(0) at t = 0 and makes a damped oscillation
toward the steady state value j iA[¥4i %s3]=(i¢ | i =2). Note, this steady state
value is exactly the result in (7.10), and it is reached in atime ¥ i i 1. With the
solution of %4 we can cortinue to nd the actual spin, e.g. J; given by (7.2c)
and predict the results of a measuremen
Experimentally, we set up pumping lasersand a probe laser measuring the
transverse spin state as in Fig. 7.1(a). The lasersare turned on and o® with
acousto-and electro-optical modulators. The deca rate in the absenceof lasers
isdenotedj 4ok Which istypically small. When the probe laseris on an additional
broadening of i yrop e IS presen leading to a total decey rate of j prope + i dark -
During the optical pumping pulsethe atoms are typically subject to a high decay
rate givenin total by i pump + i dark - The probe laseris typically turned on shortly
after the optical pumping hasbeenturned o®and is maintained for a time shorter
than the decay time (i probe + i dark )’ 1. We are thus in the transient regime of
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Figure 7.5: Examples of magneto-optical resonancesignalsin the pulsedregime.
In acw experiment weestimate j pump = 770HZ,i gark = 18Hz,andj prope = 2Hz.
The timing of pulsesis shownn in the two insets, the only di®erencebetween (a)
and (b) is the pump duration being 1.0msand 1.5ms, respectively. The thick
solid line is a simulation asdescribed in the text, the thin solid line is a measured
spectrum. The only free parameter in the simulation is the height which is
common for both "gures (and for all data points in Fig. 7.6 below). We de ne
the width and height of the traces as shown in part (a) , thesewill be discussed
in Fig. 7.6.

Eqg. (7.20) and given the frequency! of the driving RF-magnetic eld we cannot
obtain a simple estimate of the amplitude of the responseat that frequency as
in (7.13). Instead we have time varying quadrature componerts of the measured
photo current i(t) and we simply integrate theseover time in the presenceof the
probe laser. From the perspective of modeling we needto ewlve 34 according
to (7.20) with the relevant decey rates and integrate the result over the time of
the probe laser pulse.

We perform the pulsed experiment and compareto simulations, experimental
examplesare shown in Fig 7.5. Given the laser powers we may from cw experi-
ments deduceparameterslike | pump , i dark » @nd i prob e fOr usein the simulations,
and we choosethe timing of pulsesas shown in the insets of the gures. Only a
common height to the simulated spectrum is a free parameter. From the "gures
we seethat the model and the experimental data match to a high degree,only
small details in the experimental spectra are not covered by the model. These
details are partly noiseand partly someasymmetry which arisesfrom a possible
non-perfect orientation and from the fact that the optical pump laser cortributes
a small Stark shift. The structure consistsof a certral peakwhich is dominant at
short pump durations Tpump . We obsene small sidebandswith separation 67Hz
= T,;uﬁ]p which increasein magnitude for longer pump durations. For very large
Toump We end up with a single, broad structure. As we shaw in Fig. 7.5(a) we
de ne a height and width for the simulated and measuredspectra. These are
comparedin Fig. 7.6, we seethere is a very nice agreemen for a longer range of
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Figure 7.6: Comparison of heights and widths of the simulated and measured
magneto-optical spectra, seefFig. 7.5. Wehave | pump ¥4 770Hzwhich corresponds
to a characteristic time around a millisecond. We seethat for Ty,ymp , 2msthere
is essetially no changein the height and width of the spectrum, the steady state
value of Eq. (7.20) has beenreached with the strong i pump -

pump durations than the two shown in Fig. 7.5.

We do in general nd good agreemen with simulated and measuredspectra.
As another obsenation, wewill state that with a good approximation the width of
the pulsed spectrum grows proportionally with i pump if We just to a reasonable
externt have j dak + iprob ¢ ipump & T;rolbe. In addition, we may show by
dimensional argumerts that (for "xed orientation) the area A of the spectrum is
connectedto the width j and to the macroscopicspin Jx by A = const¢J2=;.

In the experiment discussedin Sec.10.1this was partially usedto estimate J.

7.6 Stark Shifts by the Prob e

We concludethis chapter with a study of the in°uence of the Stark e®ectfrom the
probe laseron the magneto-optical resonancdines. There are seweral motivations
for this. Firstly, this is a direct experimental test of the higher order terms
(proportional to ay) in the interaction Hamiltonian (5.18), and secondly we will
get someunderstanding related to the fact that the laserbeamdoesnot cover all
atoms at the sametime. Finally, someexperimental diagnosticscan be applied
from the Stark e®ect.

Let us calculatethe Stark e®ectfrom the probe laseron the magnetic sublewels
jF; mi. We let the light be strong and linearly polarized along the vector

€1 = €, Cos®+ ey sin®; (7.21)

i.e. ® is the angle betweenthe macroscopicspin direction (the x-axis) and the
probe polarization direction. The Stark e®ecton magnetic sub-lewels is in our
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casemuch wealker than the splitting causedby the constart magnetic "eld and
can be calculated in non-degenerateperturbation theory from the interaction
Hamiltonian (5.1@. Ehe ap term is common to all levels, the a; term is zero

on averagesince 8, = 0, and we are left with the higher order componerts
proportional to a,. For the linearly polarized probe we may show that

D E 4 D E 4
8. (1) = @e@i@ and & (1) = @eﬂ ze. (7.22)
where A(t) is the photon °ux and Stokesoperators are normalized to photons per

second. Then the higher order terms of the interaction Hamiltonian for a single
atom can then be written

he . 2 B i ) ¢
ﬁiﬁ? =i W2_1/4a2 CA(t) ¢ f‘§ i [[\>2< i f\S]COS(2®) i XMy + VyIx]sin(2®) :
(7.23)
Now, in the basisquartized along the x-axis we may easily derive
tmj {2 jmi = m?;
. 2
h’njf‘f,jmi _ F(F+1)im ;
F(F +21 i m? (7:24)

2 1
0:

tjsdy + NPk jmi

We can now calculate in perturbation theory the cortribution of the Stark shift
to the energylevels from the above Hamiltonian.

" 1+ 3c0g2®) em2; L+ cos(®)

> i 5 —F(F+ 1)’ - (7.25)

e 2
EStark - CRPY t
m aag e e

Comparing to the quadratic Zeemane®ectof App. F we easily derive that the
Stark e®ectcausesan additional splitting between two resonancelines of the
magneto-optical resonancesignal of

) 2a2 ;
0 = 5
sk [H2] = i 777 CA(L) ¢[1+ 3c0920)] 726
_ 1_03¢106|_|ZP[mW] ¢ay(¢) ¢[1+ 3coq2®)] ’
' A[sz] ¢C plue [MHZ] '
where we inserted ° = 5:21MHz and , = 852nm, and we related the °ux A(t)

to the probe power P. a, wasde ned in Eqg. (5.16). We remark that we have
here preseried an alternativ e calculation of Eq. (6.24). The additional factor
(2F | 1)%> =2 arisesfrom the fact that in Eq. (6.24) we calculated the shift of
the outermost resonancdinesm=F$ m=Fj lorm=iF$ m=j F + 1.
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Figure 7.7: (a) The Stark splitting °sirk  Versus polarization direction ®. The
dots are experimental and the solid line a 't. We conrm the 1+ 3coq2®)
dependencepredicted by Eq. (7.26). The tted constart C can be compared
quantitativ ely with the theory, seethe text for details. (b) The Stark splitting
per milliw att of probe power ° sk =P versusblue detuning (j ¢). Again there is
agreemen with theory, we con rm the dependenceon a,=¢. The small deviation
at low detuning can be explained by Doppler broadening.

The Stark splitting can be measuredwith high precision by magneto-optical
resonancesignalslik e the exampleshawn in Fig. 7.2(b). From the experimentally
measuredsplitting we subtract the quadratic Zeemancortribution (F.7) °qz =
23:0Hz to obtain the Stark cortribution © g« -

We set up an experiment to measureMORS for di®erert valuesof the angle
®, the probe power P, the detuning ¢, and the beam crosssection A. First of
all, we nd that the Stark splitting is independert on the beam cross section
A. The reasonfor this is the fact that atoms are moving in and out of the
laser beam. For a constart power P all atoms seethe sameaverage number of
photons independert on A. We alsocon rm experimentally that the splitting is
proportional to the power P.

Next, we examine the dependenceon the angle ® The results is shavn in
Fig. 7.7(a). We make a 't to Eq. (7.26) with an overall constart C and an
o®setangle ® as only free parameters. We nd an o®set®, = 4:7deg which
we take as a mis-calibration of the polarization direction ®. The experimental
uncertainty in ® is about one degree. We also nd that the dependenceon
(1 + 3coq2®)) is con rmed, and the constart C matchesthe prediction (7.26)
if we take A = 5:8cn?. This is very closeto the e®ectie transversearea of our
vapour cell Agg ¥4 6:0cm? which we mertioned in Sec.4.2.

We also examine the dependenceof the Stark splitting on the blue detuning
(i ¢). To obtain a higher precision we take seweral points with di®erert probe
powers P. We plot the measuredsplitting versusprobe power and make a linear
't to the data. This results in a slope °sirk =P which is plotted in Fig. 7.7(b).
This is tted to the modely = Ca,=¢ ;e and we seethat the data and the solid
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line T match very well. A small disagreemeh for low detuning is probably a
result of the Doppler broadening. We nd agreemem with Eq. (7.26) if we take
A = 6:1cm?. Again there is good agreemen with an e®ectiwe area of 6.0cn?.

We conclude that our predictions match very well with experiments, both
qualitativ ely and quartitativ ely. Thus we have con dence that the Hamilto-
nian (5.18) is correct. We also learn that the atomic motion can be modeled
by an e®ectiwe transverse area A¢p = 6:0cn? of the vapour cell (at least for
classicalmean values). Finally, we sawv that the measuremets could indicate a
mis-calibration of the polarization angle ®. Also, by comparing the Stark split-
ting for two atomic sampleswe have the possibility to measurethe light lossin
the propagation betweenthe samples(we cannot place power meters inside the
vapour cells).
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CHAPTER 8

Recording Quantum Fluctuations
of Light in Atoms

In this chapter we examine the interaction betweenatomic spins and the polar-
ization state of light at the quantum level. Our motivation for this is two fold.
First of all, we would like someevidencethat the theory described in Chaps. 5
and 6 leadsto correct predictions for experimental results. In the presen chapter
we take the basic equationsof interaction (6.11-6.14)asour starting point. With
these at hand, we dewelop an understanding of the dynamical ewvolution of the
guantum spin state in the presenceof a laserbeamin a non-classicalpolarization
state. We will 'nd corvincing agreemem betweentheory and experiment. Sec-
ondly, the experimental results demonstrate that our atomic spin states indeed
are sensitive to the quantum °uctuations of a light beam. This is one necessary
step toward the realization of a full scalequantum memory for light basedon
bad action of quantum measuremets. We discussthis more carefully in Secs8.5
and 11.3.

Other approadcestoward a quantum memory for light exist. With the aid
of electromagnetically induced transparency, the amplitudes of an electric "eld
can be mapped onto coherencef atomic ground state spins[30]. This hasbeen
demonstrated experimentally in [31, 32, 33] for classicalmean values of ampli-
tudes and phase. Theoretically this should alsowork for quantum °uctuations.

The contents of the presert chapter are publishedin [I1,VI I]. The work of the
presern chapter alsoshedslight on the ultimate sensitivity of spin measuremets.
This is discussedin [I11,V].

A sthematic view of the experimert is shovn in Fig. 8.1. An atomic sample
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Spectrum
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Optical pump and
repump lasers

Figure 8.1: Schematic view of the experimental setup. A probe laser is sert
through a sample of oriented atoms. The optical and repump laser maintain the
spin orientation. A detection systemmeasureghe °uctuations of the light leaving
the atomic sample. A constart magnetic "eld B ;s moves atomic °uctuations
to the Larmor frequency-.

is placed in a constart magnetic "eld Byjas and the atomic spins are oriented
parallel to this magnetic eld alongthe x-axis. The spinswill rotate with Larmor
frequency- = gl gBpias=h (seeApp. F). The spin orientation is maintained by
the optical pump and repump laserswhich are running cw. The optical pump and
repump power can be adjusted, especially the resonan optical pump laser will
causedecy of the spin state with a rate j depending on laser power. The probe
laser emergesfrom a sourcethat will be described in Sec.8.2. The quantum
polarization state of the probe laser can be coheren or squeezed. The probe
laser passesthe atoms and exchanges quantum °uctuations with these. The
outgoirng laser peam is measuredby a detection system, and the photo current

i(t)/ é;’“‘ (t) (seeEq. (E.1)) is fed into a spectrum analyzer. Our goalis to

predict the spectrum of i(t) and connect this to the quantum variables of the
atomic spins and the polarization state of the probe laser.

8.1 Theoretical Approac h

We write up Egs. (6.11-6.14)with the addition of the Larmor rotation and the
spin decoherence.This reads

S = & (1) + @S, (0); (8.1)
8out (1) = SN (1); (8.2)
280=1-201 150+ B0+ a&; 8.3)
SR =-H0) 1 150+ B (8.4)

The magnetic eld adds the term h- J} to the Hamiltonian which leadsto the
“rst terms of Egs. (8.3) and (8.4). The decoherenceof the spin variablesis put in
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by hand with a decay rate j. This decay term must be accompaniedby Langevin
forces I‘—“y and F, to presene the correct quantum statistics. The properties of
these Langevin forcesare calculated in App. G.

The above equations are conveniertly solved iy Fourier space. Irgaddition,
with the knowledge of the correlation function é;’“t(! )§§“t(i 19 we may

directly d%ducgethe spectrum of °uctuations of the photo current de ned by

©() = 1= 2% H(t)i(t+ ¢)i € ¢d¢. Wewill 'nd mathematically

) D E D E

Ay ex(t j 107 SM)SUG 1Y+ SMG ST Y - (8.5)
This is essetially the Wiener-Khintchine theorem [86], foi more details see

App. E. We dene the Fourier transform by St (1) = p1- " Spu(t)e" tdt and
with somealgebrathe above equationsturn into

Suty=§r()+as () (8.6)
gty =8&nay; (8.7)
G B -+ G i)aksN().
hy= Cine szt ©®9
50 = - Py () * (i P+ - a8, (8.9)

Ci )+ 2 +2

Inserting (8.9) into (8.6) givesthe Fourier componetds of the outgoing §y oper-
ator. We needto calculate the correlation function é;,’”‘(! )§§’”t(i 19 andto

this end we needthe correlation functions of the Langevin forces Fy, F,, and

the Stokesoperators Q‘y“, é‘z“. The Stokesoperators are discussedn App. E, the
Fourier transform of Egs. (E.10) and (E.11) yields

D . E S
SO =2 i 1

D _ E S (8.10)
ST =2 i 1Y

where we have introduced the squeezingparameters 2, and 2, suc that 2, =
2, = 1for the input light in the coheren state (classicallaser light) and 2y, < 1
or 2, > 1 for light with squeezedéy-componert or vice versa. The Heiserberg
uncertainty relation requires 2y ¢2, . 1. The 2-parameters measurethe noise
level of the Stokes componerts relative to the level with coherern state light.
Physically, the delta function (! j ! 9 times the constart S,=2 givesthe light
noisea white power spectrum which grows proportionally to the °ux of photons.

The Langevin forcesare derived in App. G, Fourier transforming Eq. (G.6)
yields D

E D E
FyMFYyG 1Y = F)FG 1Y =it i 'Y (8.11)
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where is the spin deca rate introducedin Egs. (8.3) and (8.4), and jJ«j is the
magnitude of thgymacrgscopicspin state along x. There are also non-zero cross

correlations like lf\y F, which are all delta-correlated as the direct terms.

Now, from Eqgs. (8.6) and (8.9) we note that (apart from c-numbers) é;,’“t(! )
only dependson the quantum variables Si" (1 ), S"(1), Fy(! ), and F,(! ). Since
all these have correlation function proportional to (! j ! 9 it follows that this
is the casefor é;’“‘(! ). From Eq. (8.5) and somelengthy but simple algebrawe
derive the spectrum ©(! ) of the photo current i(t). Leaving out irrelevant front

factors we get

Yo Y4
122 272
1a2s? a?J2S,2,

Sx A
| = 22 .

o(! 5%y + T 2+2 > + 2ijJxj + neg.freq. (8.12)
We have made the narrow band approximation j ¢ - andj- j !j¢ - which
clari es the resonart structure of the power spectrum around - with width j.
There is also a similar negative frequency componert around j -. The cross

correlations of the Langevin forcesand Stokes operators do not cortribute here,
this is a result of the special form of Eq. (8.5) which again is a result of time-
ordered light "eld operators (seeApp. E).

The spectrum (8.12) is very intuitiv e. The rst term is the noise of the
incoming light, it has a white spectrum and is proportional to the photon °ux.
For 2, = 1weareat the shotnoise level (SNL). The secondterm hasa Lorentzian
prole certered at the Larmor frequency - with line width i (HWHM). This
corresponds to the slow time dynamics of the spin state ewolution being of order
i 11, The rst term inside the curly brackets is called back action noise, it is a
result of the quantum °uctuations of light being stored in the spin state. The
last terms in the curly brackets is the projection noise of the spin state.

To nd acornveniernt way to comparetheoretical predictions with measuremen
weintegrate the power spectrum over frequencies.We de ne the back action noise
area and the projection noise area by
Hg T3 Hg 12

X . — 2; H X .

— PNA = 2Va%jdyj — ; (8.13)
i 2 2
i.e. the integral over the “rst and secondnarrow band term in the curly brackets
in (8.12). We note that the BANA scaleswith the photon °ux to the third power,
with Jf, and inverselywith j. The PNA scaledinearly with the spin sizeJy, this
is the usual nger print of quantum noiseimposedby the Heiserberg uncertainty
principle. Note alsothe quadratic scalingwith photon °ux and the independence
of the width i, projection noisecannot be washedaway by decay processes.The
shot noise level SNL = S;=2 connectsthe BANA ; (with coheren state light,
2y = 2, = 1) and the PNA in the following way

1/94 722
BANA. = 23x%

PNA = 2 Yi(BANA 1) £ (SNL): (8.14)

We may denote the area of additional noise cortributions to the atomic noise
astechnical noise area TNA. Tednical noise (from e.g. lasersor radio stations)
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Figure 8.2: (a) A pictorial description of di®erent noise cortributions. The shot
noiseof light hasa white spectrum and is representied by the °at dotted line. The
narrow band cortribution is divided in to three terms, the badk action noise,the
projection noise, and the technical noise (seetext for more details). The badk
action cortribution (shadedwith gray scale)can be consideredas the \memory
part" of the atoms. (b) An example of a measuredspectrum. The solid line
is obtained with the input light in a vacuum state (3y = 2, = 1). When the
input mode is in a squeezedstate (dashedline) the Lorentzian part from atoms
increaseswhile the wings decrease.The peak on the right is technical noise. In
the experiment - = 325kHz.

can scalein di®erent ways, but an important fact is that external sourceswill be
commonto all atoms in the sample. As a consequencehe TNA will scaleasJ?.

The di®erent kinds of noise are illustrated in Fig. 8.2(a). On top of the
°at shot noiselevel (SNL) are the narrow band cortributions PNA, BANA, and
TNA. These three contributions add up to one joint Lorentzian structure, in
Fig. 8.2(b) we show two experimental spectra of this kind. The solid line is taken
with coherert state probe (3y = 2, = 1). The dashedline di®ersfrom the solid
line solely by a changed quantum state of the input light, we have squeezedéy
such that 2y < 1 and 2, > 1. We note the reduction in the baseline according
to the rst term in Eq. (8.12), and we seethat the Lorentzian peak has become
larger causedby the extra noisein the anti-squeezedcomponert S,, seeEq. (8.13)
for BANA. We wish to single out the individual cortributions PNA, BANA,
and TNA from experimental measuremets. To this end we may 't the narrow
structures of Fig. 8.2(b) by a Lorentzian shaped function obtaining the total
narrow band noise area. In the caseof coherent probe (solid line in Fig. 8.2(b))
we denote the area Acon and in the caseof a squeezedprobe (dashed line in
Fig. 8.2(b)) we get the area Asg. We must have

Acon = BANA;+ PNA + TNA; Asg " BANA ¢, + PNA+ TNA; (8.15)
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Figure 8.3: The experimental setup. A Ti:sapphire laser is frequency doubled
in a secondharmonic generator and down-corverted in an optical parametric
oscillator to give the quantum eld &,. This eld is mixed with a strong eld
Ay derived from the sameTi-sapphire laserto obtain non-classicalpolarization
states of éy and §,, seeEq. (A.14). This light is sert through an atomic cesium
ensenble. The light polarization and the atomic spin state exchange quantum
°uctuations, and the resulting laser beam is measuredat a polarization state
analyzer. The di®erern lasersusedin the experiment are depicted in the inset.

and we can solve this to obtain the experimental values

Asoi A 2,A i A
BANA; = =321 700 pnA + TNA = 2200 1T8Q. (8.16)
i 1 i 1
The shot noise level (SNL) and the squeezingparameters 2y, 2, are easy to
accessby measuring noise of light without atoms. The PNA can be estimated
from Eq. (8.14) and we have thus separatedall di®erern noise cortributions.

8.2 Exp erimental Setup

The experimertal setup for the study of quantum °uctuation excangebetween
atoms and light is shawn in Fig. 8.3. The light incident on atoms described by
quantum variables é;,” and éiZ“ is engineeredby overlapping a strong x-polarized
beam of light with amplitude &4(t) ¥4 Ax and a quantum “eld linearly polarized
along the y-axis with amplitude &y (t) on a polarizing beam splitter. The latter
is generated by frequency doubling a ti:sapphire laser and subsequeh down-
corversionin an optical parametric oscillator (OPO) below threshold. This pro-
cessis not a part of my thesiswork, we referto [37, 60] for details. The important
fact is that the OPO generatessqueezedracuum which is characterized by noise
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reduction (below the standard quantum limit Bficlassicallight) in either of Wg
quadrature amplitudes R(t) = (&y(t) + & (t))= 2or p(t) = (&(t) i &)= 2
while the other gets more noisy. This corresponds exactly to the caseintroduced
in Chap. 2 around Egs. (2.10) and (2.11), we stressthat the quantum °uctua-
tions of the polarization state of light is ertirely given by the quantum state of
the y-polarized mode emergingfrom the OPO.

The ti:sapphire laser is blue detuned by ¢ = j 875MHz from the D2 line
and the strong x-polarized beam has power up to 5mW limited by saturation
of our Sy detectors. The noise level in the squeezedvacuum is -4.5dB in the
quiet quadrature and 8.0dB in the noisy quadrature both relative to the classical
noise level. Howewer due to propagation losses,non perfect detection, nite
beam overlap and weakly birefringent optics after the PBS only about -3.0dB
squeezingand 7.0dB excessnoise is left at the detection. For squeezingof §y
this corresponds to 2, = 0:5 and 2, = 5:0. The bandwidth of squeezingis
8.0MHz HWHM and consequetly we can consider our polarization squeezed
probe broadbandrelative to the atomic spin noiseresonancewhich hasa width of
no morethan 1kHz FWHM (this wasassumedn App. E leadingto the theoretical
Egs. (8.10)).

The laser beam now passesthrough the atomic cesium sample which has
macroscopicangular momertum Jy created by the repump and optical pump
lasers,seeSec.4.1. Both lasersare circularly polarized with the same helicity.
By adjusting the relative power of the laserswe are able to cortrol the number
of atoms in the F = 4 ground state. The deca rate j is almost only set by the
optical pumping laser which is resonant with atoms in F = 4. The degreeof
spin polarization (better than 95%) and the number of atoms is measuredby the
magneto-optical resonancemethod described in Chap. 7.

The output Stokes parameter éy is measuredby a polarizing beam splitter.
The power spectrum of the photo current i(t) is recordedin a frequencywindow
varying from 1.6kHz to 3.2kHz around -. The resulting spectrum is a narrow
Lorentzian certered at - = 325kHzwith awidth i in the rangeof 100Hzto 1kHz
FWHM.

8.3 Exp erimental Investigation of the Mo del

Now, let us investigate our theoretical model in detail. First of all, the shape of
the experimental tracesin Fig. 8.2(b) resenblesthe theoretical prediction (8.12),
there is a Lorentzian structure on top of a °at noiselevel. The °at bad ground
level is obsened to rise or fall with respect to the shot noise level when §,
is anti-squeezedor squeezed,respectively. We also obsene an increase of the
Lorentzian peak when éy is squeezedand §, is anti-squeezed,seeFig. 8.2(b).
The opposite examplewith squeezedS, hasonly led to a very marginal decrease
of the Lorentzian peak size. First of all, the e®ectis ten times lesspronounced
(3, = 05 instead of 2, = 5:0). Just asimportant is technical ditculties with
phase locking the strong x-polarized beam and the y-polarized quantum “eld
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Figure 8.4: The bad action noise area BANA as a function of probe power on
log-log scale(a) . The probe power is proportional to Sy. Varying the probe
power will causeslight changesto the number of atoms N and the line width

i. This is taken care of by plotting BANA ¢ =N 2 on the ordinate axis. We see
the data is consistert with BANA/ S2. (b) The projection noise area derived
from (8.14). The data is, in fact, compiled from two serieswith di®eren j's,

giving strong quartitativ e support of the model.

in the caseof éy-anti-squeezing. With the qualitativ e con rmation of the spec-
trum (8.12), we now turn to a more quarntitativ e comparisonbetweentheoretical
predictions (8.13, 8.14) with experimental results. First, wetry to vary the probe
power (i.e. to vary Sy). This will have a slight in°uence on the number of atoms,
i.e. on Jyx, and somein®uence on j due to power broadening. From (8.13) we
expect BANA ¢ =N 2 to be proportional to Sg. This is indeed con tTmed exper-
imentally, seeFig. 8.4(a). We also wish to con'rm that BANA scaleswith J?2
and that the predicted projection noisearea PNA scaleslinearly with Jy, given
by Egs. (8.13). Note, thesetwo scaling relations are equivalent sincewe predict
the PNA from the BANA and the shot noiselevel. The experimertal results are
shawn in Fig. 8.4(b). We again con rm the predicted scaling, and in addition,
the constart of proportionality is consister for di®erer valuesof j.

Finally, let us examine the BANA as a function of j. The line width j
is controlled by increasingthe power of the optical pump laser. Doing this only
a®ectsthe macroscopicspin weakly, and we candirectly examinethe scaling. This
is donein Fig. 8.5(a), where we clearly seethe correct scalingwith j i 1. We may
also considerthe noisenot originating from the bad action e®ect. This residual
noise area (abbreviated RSN) given by the projection noise plus the technical
noise (PNA + TNA, seeEq. (8.16)) is plotted together with the predicted PNA
in Fig. 8.5(b). We seethat the RSN decreaseswith increasingj and seemsto
approac the PNA. The physical interpretation is simple. The technical noise
picked up from someunknown source can be reduced by increasing the power
of the optical pump laser. This will exactly destroy the spin state created by
technical noise and push the spin toward the coherern spin state. The coherert
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Figure 8.5: (a) The measuredback action noise area (BANA) for the vacuum
light input as a function of decay rate j on a log-log scale. (b) The measured
residual spin noise(RSN) and the inferred projection noisearea(PNA) calculated
from (8.13).

spin state has an inherent quantum noise (the PNA) which can by no meansbe
reduced. Thus we seein Fig. 8.5(b) that the PNA is independert on j, and that
the residual noisewill not decreasebelow the PNA.

In Fig. 8.5(a) we also see,that the badc action noise BANA can indeed be
reduced in the sameway as technical noise. Back action noiseis a pile up of
guantum noise from the probe laser and the optical pump will clear up this
again. The stronger the optical pump, the lesserpiling up of badk action noise
(and technical noise).

A commert should be added to Fig. 8.5(b). Theoretically, the RSN should
really corvergeto the PNA in the limit of large j if our understandingis correct.
Experimertally, we could not go further than i = 1kHz, but even so one may
still suspect that the RSN is corverging to a slightly higher value. There could
be seweral reasonsfor this, e.g. non-perfect orientation of the spin, higher order
e®ectsdiscussedin Sec. 6.4, e®ectsof beam geometry, etc. We do not have
experimertal data suggestingwhich of these e®ects(if any) play an important
role heresowe will not dig further into that. But this doesnot changethe overall
impressionof the results. There is a very good agreemenm betweenthe theoretical
predictions and the experimental data, and we have a good understanding of the
various noise sources. All together the Faraday e®ecthas beenstudied in detail
and found to agreewith the theory on the level of quantum °uctuations.

8.4 Broadband Atomic Noise

For completeness,in this section we will brie°y discusssomebroad band noise
which has been obsened in addition to the narrow band structure given by
Eq. (8.12). Consider Fig. 8.6(a) which shaws a noise spectrum similar to the one
in Fig. 8.2(b). Here we seethe recorded signal in presenceof atoms and in the
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Figure 8.6: (a) An example of the recorded spectrum with atoms (upper trace)
and without atoms (lower trace). We seethat in the casewith atoms we have
somewhite atomic noise on top of the shot noise level The frequencyis relative
to the demaodulation frequencyat 325kHz. (b) Plotted is the white atomic noise
level as a function of the peak height of the narrow structure (seepart (a) of the
“gure), note the log-log scale. The noiselevels are normalized to shot noise. The
probe power and beam size are varied in this experiment. Seetext for details.

absenceof atoms. The important fact is that the °at badkground is higher than
the shot noise level in presenceof atoms, i.e. the atoms cortribute somebroad
band noisewhich we denote white atomic noise (white sinceit seemsto be quite
broad band).

In Fig. 8.6(b) this white atomic noiseis plotted versusthe peak height of the
narrow band atomic noise (both normalized to the shot noise level) where we
for di®erent beam sizesvary the probe power. The beam sizeis cortrolled by
clipping a large beam with an iris. The fact that Fig. 8.6(b) reveals a linear
dependence(slope closeto unity on log-log scale)just tells that when the narrow
atomic noiseincreaseghe white noisepart increasesn the sameway, the increase
is here causedby variations in the probe power. We have not extensiwely studied
the white noise dependenceon various parameters but we do have indications
that it scaleslinearly with number of atoms and quadratically with the probe
power. What is also clearly seenfrom the "gure is the fact that the white noise
seemsto cortribute more for a smaller beam size. The reasonfor plotting the
white noise as a function of the peak height (a property of the narrow noise) is
that we exclude the growth of the white noiseto be causedby a simple overall
growth in noise. We explicitly seethat the fraction of white noiseincreaseswith
decreasingprobe diameter.

To understand the white atomic noisewe needto carry out more experiments,
it could be interesting to know the bandwidth of this noise but bandwidth limi-
tations of detectorsand electronicsexclude us from doing this in an easyfashion.
But we certainly have suzcient information to start speculating on the reason
for the white noise. One should remenber that broad band noise corresponds
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to fast decoherencdimes, if the white noise cortribution is relatively large there
are relatively many atoms which live for a very short time or which are only
measuredfor a very short time. Sincethe white noise cortribution is largest for
small beam sizeswe proposethat it is causedby atoms which have spert little
time inside the volume illuminated by probe light. If an atom traversesa beam
of 5mm diameter with a typical speedof 137m/s (seeSec.4.2) the time duration
will be of order 37t s corresponding to a typical frequency bandwidth of order
27kHz which is broad band with our typical frequency scales. The narrow peak
would then be causedby atoms which have had se\eral opportunities to enter
and leave the region illuminated by the probe laser. We stressthat this expla-
nation would gain more con dence with more experimerts. In the experiments
reported in previous sectionsa Gaussianbeamwith waist 5.1mm was used. The
white atomic noise was obsenable but all results were concernrating solely on
the narrow part of the atomic noise.

8.5 Discussion of the Results

Let us summarize and discussthe results of this chapter. We started out in
Sec.8.1with the basicequationsof interaction (6.11-6.14)and developed a model
to describethe particular experimental setup of a polarized laserbeaminteracting
with a sampleof polarized spins. The theoretical predictions were demonstrated
experimentally and we concludethat we understand the light/matter interaction
in detail, this includesthe exchange of quantum °uctuations betweenlight and
matter.

The fact that the y-polarized mode could be illuminated with squeezedvac-
uum demonstrated the sensitivity of the spin state to a quantum “eld of light.
The atoms responded to this light in a way which was not much weaker than
e.g. uninteresting technical noise sources,the clear di®erencebetween the two
Lorentziansin Fig. 8.2(b) is solelydueto the quantum statistics of the y-polarized
mode emergingfrom the squeezingsource(the OPO). In fact, for our speci ¢ val-
ues of the gain of the OPO the y-polarized "eld contains about one photon per
secondper Hz of the bandwidth [60]. The atoms measuredin Fig. 8.2(b) are
only sensitive to frequency componerts of light in a width | = 200Hz Thus the
di®erencebetweenthe solid an dashedline in this caseis the absence/presence
of about 200 photons/sec. The atoms have a characteristic memory time of the
order j i  which meansthat on the time scaleof the spin life time the atoms have
beenin®uenced by roughly one photon. This de nitely underlines the quantum
sensitivity of the interaction. We note that the measuring and averaging time
necessanto createthe two Lorentzians in Fig. 8.2(b) is much more than onespin
life time but the di®erenceof atomic state is the presenceof a single photon per
spin decoherencdime.

If we direct the discussiontoward the outlook for a future implementation
of quantum memory we needto understand what interesting properties of the
qguantum “eld can be stored. First of all, for a real quantum memory we needto
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Figure 8.7: (a) A possible scenariofor storing details about a light pulse. A
rotating mirror will direct alaserbeamto di®eren storagecellsthereby recording
di®erert time bins of the pulse. This is further illustrated in (b) , the interaction
is on when Sy is high (symbolized by the dashedline). The ewlution of S, is then
sampled at di®erert times. (c) The samein Fourier space,di®eren frequency
componerts are recordedin ead cell sincethe magnetic eld varies.

store the properties of non-comrmuting variables. For instance, for a pulse of light
with polarization state described by the variables§y and §, it is desirableto map
§! JyandS,! ;. This is not what we demonstratein the preseri chapter.
We show how the $,-componert of light pilesup in the atomic spin state. Starting
out with the light "eld in a squeezedstate should lead to atomic spins ending
up in a squeezedstate in order to call the exchange of quantum °uctuations a
complete quantum map. A protocol for performing the full quantum map will
be discussedin Chap. 11.

In addition to the above discussionwe also note, that the atoms are only
sensitive to °uctuations around the Larmor frequency - in the bandwidth j.
For storage of the state of light in atoms it is desirableto have a long memory
time and accordingly a small j. Hence we can only store a single frequency
componert of a light pulsein a single atomic sample, or in other words, if the
Larmor frequency is zero we only store the average value of S, over the light
pulse. To store more detailed time dynamics of a light pulse we could imagine a
setup as depicted in Fig. 8.7(a). Chopping a long pulse into smaller piecesand
storing ead piecein a separateatomic sampleaccomplishessometime resolution.
In a classicalpicture asin Fig. 8.7(b) this correspondsto sampling the value of
§, at di®erent times. But this must be equivalert to sampling di®erent frequency
componerts of light, we could chooseto shine the light through seweral atomic
samplesead with its own Larmor frequency as depicted in Fig. 8.7(c). This
would be sampling in frequency space. If atoms were stationary a magnetic eld
gradient would accomplishthe same. A possibleimplemertation for this could
also be a inhomogeneouslybroadenedrare-earth doped solid [33].

In short, the experiments described in this chapter is a ‘rst stepin the direc-
tion of implementation of a real quantum memory. In Chap. 11 we describe the
remaining stepsto read this goal.
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CHAPTER 9

Entanglemen t, Theoretical
Approac h

This chapter is dewoted to theoretical questions and de nitions in connection
to entanglemert generation between samplesof cesium gases. We consider two
systems1 and 2 as shown in Fig. 9.1yhege two macrgscopicspins are oriented
oppositely along the x-direction with 1 = J, = i Jy» . This setting opens
up the possibility to generate an entangled state similar to the EPR-example
in [61] as we will seein the following sections. The trick is to perform a suit-
able measuremen which will \collapse" the state of the atomic spins into an
ertangled state, see[62]. This is a di®erent approach than other experimental
demonstrations of erntanglemert betweenmassiwe particles [40, 41].

In this chapter we de ne what we mean by entanglemert and we describe
how to understand the processof entanglemert generation by a measuremenh
The latter follows quite naive models which are motivated by the fact that the
polarization state of light and the atomic spin state can be described collectively
in the X ; P-represenation as we discussedin Chap. 2. We also discussgeneral
experimental aspects like the rotating frame, lossesfor light propagation, non-
perfect detectors, and methods for proving the generation of ertangled states.
Actual detailed description of experiments and data analysisis givenin Chap. 10.
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Figure 9.1: The schematic setup of two spin states for entanglemert generation.
Two spins are prepared in coherent spin states with opposite directions and the
samemagnitude Jy. This setupopensup the possibility to perform joint quantum
non-demolition (QND) measuremets on the two states[62)].

9.1 De nition of Entanglemen t

Let us characterize erntangled states between samplesof macroscopicensenbles
of cesium gasesthat we usein our experiments. To this end let us start with
the usual de nition of entanglemert. We considertwo systems1 and 2 which are
described by a joint wave function A. If this wave function cannot be written as
a product A = A;(x1) ¢Ax(x2) where Ay, are wave functions of the individual
systems1 and 2 depending on parametersxj., of two systems,then the state of
the two systemsis entangled. A well known entangled state is the singlet state
of two spin-1/2 particles jAi = sL(j"#i i j#'i). It is easyto seethat this state
cannot be expressedas a product wave function.

Now, the aboveis a pure state de nition, for mixed statesdescribed by density
operatorsthere is a similar de nition. Consideragaintwo systemsl and 2 and let
the joint density operator be givenby %2 If %4, and %, are setsof density operators
describing the individual systemsl and 2, and if ¥2cannot be decomposedinto a
sum of products of these,i.e.

X
156 piYai - Yai State is entangled,; (9.1)

|
wherethe p;i's are positive, then the systemis in an entangled state. The above
denitions are intuitiv e, they tell that individual stories A; and A, or for mixed
states ¥4; and Y; are not enoughto characterize the ertire systemdescribed by
A or % something extra is needed. But while being intuitiv e the de nitions are
not necessarilyeasyto apply for an experimentalist in the laboratory. Howewer,
from this de nition Refs.[63, 64] have derived the following result:
For two cortin uous variable systems1 and 2 a suzcient condition for having
entanglemert is satisfaction of the inequality
3 - 3

Var X1+ X, +Var P P, <2 (9.2)

whereX, Py and X, P», are contin uousvariablesdescribingthe two sub-systems
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[
satisfying the commutation relations X;j;P, =i for j = 1,2. If we consider

Gaussianstatesthis is also a necessarycondition. This entanglemert criterion is
easyto apply for an experimentalist, variancesof measuredvariables are easily
estimated by statistical means.

Now, in Chap. 2 we described how our spin systemscould be regardedas con-
tin uous variables described by operators X and P. For our system of oppositely
oriented spins the above inequality turns into

3 ’ 3

Var Jy1+ Jyo +Vvar S+ 8 <2)c . Stateis entangled:  (9.3)

This erntanglemert criterion is intuitiv e. If we assumethe two systemsto be
independert of ead other, how low can the left hand side of the inequality
then be? The answer lies in Eq. (2.5). For minimum uncertain states (coheren
spin states) we have Var(Jy1) = Var(Jy,) = Var(Jy1) = Var(Jy) = Jx=2. For
independert states we have Var(Jy; + Jy,) = Var(Jy1) + Var(Jy2) and similar
for the z-componerts. Taking all this together we seethat equality of the above
criterion is the best we can obtain classically

We should also here make a referenceto [65] which raises some intriguing
guestionsabout the validity of the useof Eq. (9.2) for spin systems. However, it
is agreedthat the criterion (9.3) is valid.

9.2 Entanglemen t Generation

Let us now discussthe methods we apply in order to generate entanglemert.
First of all, considerthe commutator

h i E D E
\j\yl + J’\yz;j\zl + J\Zz =i J’\xl + j\xz = i(Jx i JX) =0 (94)

The fact that this commutator haszeromeanfor two oppositely oriented spinsen-
suresthe existenceof entangled states, the variancesVar(J\y1+ J\yz) and Var(J\21+
J52) can simultaneously be arbitrarily small and break the inequality of the en-
tanglemert criterion (9.3).

We will generatethe entangled state by a quantum non-demolition (QND)
measuremen of the two operators Jy1 + Jy, and J;1 + I3, asdiscussedn [62). To
describe this processwe will for simplicity start out with two oppositely oriented
spins J; and J, in zem magnetic eld, we commert on the rotating frame with
a non-zero magnetic eld below. Placing the spins as depicted in Fig. 9.1 and
applying a probe laser beamthrough both samples,the equations of interaction
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(6.11-6.14) will turn into

é;,’“t (t) = éi,” (1) + aSc(J21(t) + F22(1)); (9.5)
8 (1) = &' (v); (9:6)
@‘\yl(t);@@\ﬂ(t) = ad, 18N (t) + ad 8N (1) = ©; (9.7)
W o 9.8)

where the Stokes operators here are normalized to photons per second. We see
that a measuremen of S will provide information about J;1 + J32, and if the
secondterm of Eq. (9.5) is large comparedto the rst onewe will make e®ective
measuremets of the spins. At the sametime, the vanishingtime derivatives(9.7)

and (9.8) ensuresthe measuremento be non-destructive. For the time derivative
of J\yl + J\yz to be zero, it is important that the spins are opposite with same
magnitude J, and the absenceof light losseshetweenthe samplesis alsorequired
here. If lossesare presen the S,-componert seenby the two spin sampleswill

be di®eren, seeSec.9.6.

We will let the probe laser be on for a time duration T while measuringthe
éy-componert of the light. We measurethe photo current i(t) and for the rest
of this chapter we assumethat it is (in appropriate units) equal to é}?”‘. This
corresponds to a perfect detector etciency, seedetection theory in App. E and
Eqg. (E.1). Wewill write i(t) = §§’“t wherethe dot symbolizesthat a measuremen

is performed. De ning the integrated value of the outcomeas A = OT i(t)dt, we
“nd that A is a the outcome of a measuremeh of the operator
Az SM(tydt=  §(t)dt+ aS,T(J;1(0) + J32(0)): (9.9)
0 0

After this processwe may apply another laser beam along the y-direction, or
alternativ ely rotate the two spins by 90 degreeswith help from a magnetic "eld
and apply the samelaser once again. Then a non-destructive measuremen of
Jy1 + J)2 is performed and the z-componerts are una®ected.

Now, we will quantify the magnitude of the secondterm versus'rst term in
Eqg. (9.9). If we calculate the variance we obtain

A !
Zq
Var SO (t)dt
0

Z1Z+1pD

E
S S (1Y dtdt®

+ a%(ScT)?Var J31(0) + J32(0)

ST ST
XT + a2(ScT)%Jy = XZ

i ¢
%|1+2-2 ;

(9.10)

1+ 2a%S,TJy
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D E
wherewe usedthe fact that S (1)Sin (19 = S,=2¢x(t 9, seeEq. (E.10). We

dened -2 = a?S,TJ, asa gure of merit for the spin cortribution compared
to the light noise cortribution. Above we assumedthe spinsto be prepared in
the coheren spin state with variancesequal to J4=2, seeEq. (2.5). For excient
entanglemert generation we needto have - 2 large comparedto unity. We see
that we gain by increasingthe magnitude of the spinsJy, by increasingthe total
photon number npy = S, T=2, or by adjusting the interaction parameter a given
by Eg. (6.15).

It is here appropriate to connectthe concept of ertanglemert between spin
states to the concept of spin squeezing. If we in the above considerationsonly
had one spin sample (sample 1 for instance) the measuremen of é;,)“‘ for a laser

beam propagating ﬂong the z-direction would obtain information about J}1,
and the variance of OT §;’“t (t)dt would have beenS, T=2¢(1 + - 2). At the same
time the e®ectof the probe laser on the J'\yl—componert would be governed by
@y1(t)=@= aJx 8 (t) which leadsto

Z
KM = H10) +al S (ndt )
0
3 ’ s ’ Zv Zt D E
var Jyi(T) =var Jj:(0) +a23? dt di® szZ")&r@ey  (9-11)
0 0
_ Jx aZJfSXT _ Jx o\,
2t 2 T W

wherethe initial spin state is assumedto be the coheren spin state with variance
Jy=2. We seethat when we for higher - 2 obtain better information about the
J51-componert of the spin we pile up more noisein the J‘yl-componert which
is required in order not to violate Heiserberg's uncertainty principle,(2.3). Tihis
uncertainty relation is a consequencef the non-comnuting property J\yl; B =
iJx. Now, for our two sampleswe have commutators
i h [
J\yl + \j\yz;J\zl i ‘1\22 = 23y and \j\zl + J\zz;J\yl i \],\yz =23y, (9.12)

while all the other combinations vanish, i.e.
h i h i
J,\y1 + \]’\yz;\j\yl i J\yz = J\zl + J,\z2;~]l\zl i J\ZZ
h i h i (9.13)
j\yl + j\yz; j\zl + \],\22 = J\y1 i J\y2; j\zl i \j\zz =

I
e

This motivates the interpretation of entanglemert to be squeezingof two inde-
pendert modes Jy; + Jy2 and 31 + J;, at the expenseof anti-squeezing the
conjugate variables 851 i J32 and Jy1i Jy2, respectively (such represertation has
beendiscussedin [66]). We have the two corresponding Heiserberg uncertainty
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relations
3 4 3 e
var Jy1+ 82 Var $510 I . J2 and
3 © s g (9.14)
var J;1+ 3 var Sy 8. 92
In the caseof two spin samplesa calculation similar to Eq. (9.11) will shov how
much noiseis piled up in the anti-squeezedvariables Jy1 i Jy» and 3317 J32,
3 - 3 -

Var Jy1(T) i Jy2(T) = var FHu(T) i Ja(T) = 3@+ 2-2): (9.15)

All equationsin this sectionare coheren ewolution of the spin states. But we also
perform measuremets which changethe spin statesin a non-coheren way and
hopefully create the entangled states. In next sectionwe try to model this mea-
suremert and the corresponding spin state ewolution. The above considerations
will play an important role in the understanding of the results.

9.3 Wave Function Mo deling

The fact that the collective properties of light and atoms can be described by
position and momertum like operators (see Chap. 2) motivates a simple model
where the ertire spin state is described by a wave function A(x) like it is well
known for a single particle in elemenary guantum medanics. For simplicity we
will in the following describe a single spin ensenble and the e®ectof a measure-
ment as we already discussedaround Eq. (9.11). As in Egs. (2.10) and (2.4) we
de ne R, Ry
)e‘l_ = M and ﬁL = jpw
ST ST

for light pulses(indexed by L) of duration T and for the atomic spin state (indexed
by A) we de ne

(9.16)

Xa = p‘j}]’: and P, = p‘%:: (9.17)
X
h i
Thesede nitions fulT X;P = i. We now assumethe state of light and atoms
to be described by a Gaussianwave function on the form
H . 2 T
A(x) = Nexp j (Xi Xo)” ipoX ; (9.18)

%

where N is a suitable normalization constart. A Gaussiandistribution is mo-
tivated by the fact that our physical systemis composedof a huge number of
particles ead having their own statistical properties. The certral limit theorem
ensuresthat the collective properties will be Gaussianif the individual particles
are not too far from being independen of ead other. The above state ful'ls
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D E D E

X = xo, P = po, Var(X) = %, and Var(P) = ¥ = 1=(4%). We always
have Var(X)Var(P) = 1=4, i.e. we are in the minimum uncertainty state. For
the coherent state of light or atoms we have %§ = 3/5 = 1=2. The operators are

described by the usual substitution X ! x and B! | i@@. We may change
from x to p represenation by a Fourier transform

Z
A(x) = pl—T P A(p)dp;
12/“2 (9.19)
A(p) = p=— e P A(x)dp;
() P>, (x)dp
which for Eq. (9.18) would turn into
H . 2 Il
A(p) = Nexp j Mi iX o (9.20)

4R P
Now, prepare the atomic sampleto be in the coherert spin state described by
A(pa) = N exp(i pz=2) and the light also in the coheren state described by
A(p.) = N exp(i p?=2). Now, when light and atoms interact, the ewolution is

governed by the Hamiltonian (this is essetially Eq. (5.18) with neglectedhigher
order terms)

A, ||4 = haéi\(t)fz(zt) ) !
i T T
exp iy ) Hdt =exp jia . 8, ()T, (t)dt (9.21)
= exp | iap Sy TIP.Ba =exp ji- BLPa ;

where we usedthe fact that J;(t) is constart and - is asdened in the previous
section. With the joint state of atoms and light given by A(p.;pa) = exp(j [p? +
p31=2) we calculate the evolution to be
Az, ! Horo L 2 Il
A(pLipa) ! exp i dt A(pLipa) = Nexp i =i iPLPa
0

(9.22)
If we Fourier transform this into the x-basis of light corresponding to éy we
obtain (compare Egs. (9.18) and (9.20) to seethis)

H L2 o
i[X|_| Pal i Pa . (9.23)

A(xL;pa) = N exp 5 5

So far we described coherert ewlution of the state under the in°uence of the
interaction Hamiltonian. Now we perform a measuremen of X which we model
by letting x"¢2s = X , i.e. we assumethe light part of the state to collapseto a
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de nite measurednumber. The remaining atomic state is then described by the
above equation with the variable x_ replacedby the constart x["¢?°,

A !
. : meas]2
A(pa)! Nexp i LL 1*‘21XL ] (9.24)
D E
This state DreveEaIsthe statistics Pa = 77X and Var(Pa) = zt=y. We

alsohave X, = 0andVar(Xa) = 2. Let us corvert this bad to the spin

variables §y and J;. We get
3 ’ 3

J A
Var J) :?X¢(1+-2) and Vvar J, :?Xd:

1+ .2:

(9.25)

For the J'\y—componert we obtain exactly the variance given by Eq. (9.11). The
badk action noisefrom the light 8,-componert suppliesthe extra noise added to
J"y. The Heiserberg uncertainty then allows the variance of the J5-componert to
be reducedup to a factor 1+ - 2. In our simple pure state model we stay in the
minimum uncertainty state and obtain exactly the reduction of Var(J}) by the
factor (1+ - 2).

For the mean values of the spin componerts it is conggniert to usehe units
of the detected signal, i.e. since we measure i(t)dt = = S (t)dt =  Sydt +

aS, TJ, we multiply the spinsby aS,T and calculate

D E D E 2 47
a5T §, =0 and aST §; = — ;

i(t)dt: (9.26)

Weremenber from the previoussectionthat - 2 is the ratio of atomic noiseto light
noisein a measuremen with one spin sample. The correction factor - 2=(1 + - 2)
is then intuitiv ely understandable. This factor is the ratio of atomic noiseto the
total noiseand it is the atomic portion that bearsthe spin state information. In
the limit - 2! 0 we obtain no information about the spin state, and there is no
bac action. Then the best bet for the mean value is the initial coherern spin
state value of zero. On the other hand, if - 2 A 1 the light noiseis negligible and
the correction factor should be unity.

Now, we may apply the above considerationsto the caseof two spin samples.
If we measureJ;; + 3y by integrating the equation S¢U (t) = S (t) + aS, (J1 +
J52) we know from Eq. (9.10) that the ratio of atomic to light noiseis 2- 2.
Integrating the measuredﬁf,’“t (t) we nd that the mean value of the state after
the measuremen is
2 2 YA T

D E _
as, Jyu+ I = v 27 i(t)dt: (9.27)
From Eq. (9.15) we remenber that the pile up of noisein the conjugate variable

J\yl i J\yz is Jx(1 + 2-2). With the presenation of the minimum uncertainty
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relation in our simple model we nd the variance of the created state to be
3

J
Var J,\Z]_"' J\zz X

T 1+ 22

(9.28)

which is the coherert spin state variance reducedby a factor 1+ 2- 2. The same
considerationsapply for the y-componerts of the spins. We have cheded that
the above results for two spin samples(in zero magnetic "eld) match the result
of a wave function analysiswith Gaussianwave padets.

Our modelsare quite simple and rely on the assumptionthat the collection of
spins or photons can be described by a wave function depending on the collective
variables. To get more insight into the microscopic picture of the measuremen
processwe refer to [67] in the caseof measuremets on a single spin ensenble
and to [69] for the opposite spin setup with entanglemert generation.

9.4 Rotating Frame and Entanglemen t

As we already discussedin Sec. 4.3 we place the atomic samplesin magnetic
“elds. The spin precessionforces us to consider the above calculations in the
rotating frame and we introduce the rotating frame coordinates J9, J%, 3%,

and J\Sz in analogy with Eq. (4.3). After a little algebra Egs. (9.5-9.8) can be
written

SUEREAI( ,
+aS, cos(- )[J (1) + JH(0] + sin(- HIIRL() + I(0] ;5 (9.29)
St (t) = S (v); (9.30)
@) + 3900 _ @it + 3501 _
@ @ '
We seethat the rotating spin coordinates are constarts of motion (regarding the
coherert ewlution) and that thesecan be measuredsimultaneously by measuring

é;,’”‘. The sine and cosinecomponerts can be separatedelectronically from the
measuredphoto current i(t) if the time of measuremen T ful'ls - T A 1. If we

de ne 7 7
T T
A= i(t)sin(- t)dt and B = i(t) coq- t)dt; (9.32)
0 0

(9.31)

wegetfor-TA 1
VA

T h i

A= i S (t) sin(- t)dt + anTT I (0) + 32,00 ; 035
L h i :

B = OT & (0 cog- Hdt + T 5,0) + %00
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These operators are measuredby multiplying the photo current by cos(-t) and
sin(- t) respectively and integrating over time T. The ratio of measuredatomic
noiseto light noise can be evaluated and we 'nd that A and B are outcomesof
stochastic variables with variances

ST
4

where - 2 = a’S, TJ, is asde ned in previous sectionsand we assumedthe spin
state at t = 0 to be the coherent spin state. Compared to the previous section
the atomic to light noiseratio is - 2 and not 2- 2. The reasonis the fact that
during the time T we now spert time measuring both y- and z-componerts of
the spins and not just a single componert.

We may alsoconsiderthe conjugatevariables 3, ()i J,(t) and 2, (t)i J%(t)
aswe did in previous section. The ewlution of these can be shown to be

@jyy)l(t)é a0 _ 2aJ, 8" cos(- 1); (9:35)
@it i I _
@

and we can integrate this fromt = Oto t = T to evaluate the amourt of noise

piled up in thesevariables. The result turns out to be
3 ’ 3 ’

var JPi(t)i I, = Var St i It = I«(1+-?): (9.37)

Var (A) = Var(B) = 1+ -2); (9.34)

i 2ad, 8" sin(- t); (9.36)

Now we may comparethe results of this sectionto the previous one and extrapo-
late the reasoningwith minimum uncertainty statesto the rotating frame. After
having performed the measuremen our best estimate for the mean values and
variancesare

D E 2 Z
aSXTT Ry + I0(T) = 7, i(t) sin(- t)dt;
anTDj\O 40 E_ .2 ZT_ . (9.39)
S I INM) = e o -
Var J9,(T)+ 39(T) = Var J5y(T)+ (1) = 2%

Again, let us commert on the tgsults. If - 21 1 we simply have zero variance of
30, + 52, and 59, + I while ' i(t) sin(- t)dt = aS, T=2¢[J2; + J2,] holds (and
similarly for J'\fl+ J\fz). This is just a perfect measuremen of the spin componerts
and is consistert with the total neglect of the term §iy“ (t) in Eg. (9.29). On the
other hand, if - 2! 0 the measuremen is e®ecti\ely non-existing and the spin
state is unaltered. Hence we must have variancesequal to the initial coheren
state variance J, and the meanvalue should be zeroindependert on the measured
photo current i(t), the latter is just light noisebearing no information about the
spin state.
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This is not
experimental
data.

kZ

Var(A) + Var(B)

Figure 9.2: The theoretically expectednoisein a measuremen of transversespin
componerts 1+ J» and J;1+ 33 if the spinsare preparedin oppositely oriented
coheren spin states, seeEq. (9.39). There is a constart noise cortribution from
light (dashedline) and the atomic contribution will grow linearly with the spin
magnitude Jy following the solid line.

9.5 Entanglemen t Estimation

As experimentalists we wish to createan entangled state betweentwo cesiumgas
samples,in this sectionwe describe somestrategiesfor proving that an entangled
state has been created. To this end we must keepin mind the entanglemert
criterion (9.3) and be able to useit. One of the most important tasks is to
calibrate this inequality in the sensethat we must know which values of the
variancescorrespond to equality. To this end remember that if the two samplesl
and 2 areindependert of eac other then Var(Jy1 + Jy2) = Var(Jy1)+ Var(Jy2) and
Var(Jy1 + J52) = Var(Jdy1) + Var(Jy,). Furthermore, for coheren spin states the
spinswill be in the minimum uncertainty state where theseindividual variances
amourt to Jx=2, seeEq. (2.5). We conclude that for two oppositely oriented
coherert spin states we have the equality Var(Jy; + Jy2) + Var(Jy; + J52) = 2J4.
If we for a given magnitude Jx can create coherert spin states and measurethese
varianceswe have calibrated the inequality.

Experimentally we will be in the rotating frame and we will createthe coher-
ert spin states by optical pumping processesseeSec.4.5. Then we will measure
the valuesA and B asin Eg. (9.33) and we will do this seeral times. By statis-
tical meanswe can then estimate the mean and variance of A and B and study
the statistics as a function of the spin magnitude J.

For J, = 0 we only seethe light noise (and maybe some electronics noise
from the detectors). It is easyto judge whether this light noise is limited by
guantum noise (also called shot noise) by varying the photon number np, of the
laser pulse, the noisevariance should grow linearly with ny,, seeEq. (2.12). We
will very often normalize our units of noiseto the shot noise of light since the
light noiseis easyto measure.

Now, we would start to increaseJx to non-zerovaluesand measurethe noise
variancesonce again. If the additional atomic noiseis limited by quantum pro-
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jection noise,the atomic cortribution should increaseproportionally with Jy, see
Eq. (2.5). This fact is also re°ected by the equality of the criterion (9.3). In
Fig. 9.2 we showv what a plot of the measuredvariancesVar(A) + Var(B) ver-
sus Jx should look like in the caseof the atomic noise being characterized by
the quantum projection noise of the coherent spin states. The solid line would
then be a 't to the measuredpoints and sene as calibration for the entangle-
mert criterion (9.3). The dashedline symbolizes the shot noise of light. Note
from Eq. (9.33), that the sum Var(A) + Var(B) actually measuresthe variances
Var(J9, + 3%) + Var(J2, + J%,) + light noise, i.e.

H Tas 3 : 3 ”
T T
Var(A) + Var(B) = SXT + aS,z( var 0+ 30, + var 89+ 52,
0 : ’ : 1
- ST @4 2 T+ 852 + var S+ 32 A
2 PAN

(9.39)

such that the cortribution above the dashedline is exactly the left hand side
of (9.3). To connectthis calibration to the considerationsin the previous section
we note that the atomic cortribution is equalto - 2 in the units where shot noise
of light has unity variance.

We will now turn our attention toward the evidenceof entanglemert genera-
tion. The possibly entangled state is created by the rst measuremen of A and
B which we denote by A; and B (indices 1 for ‘rst pulse). We needto perform
a secondmeasuremen A, and B in order to characterize the state created by
the rst one.

Let us discusswhat could be obsened if the pure state model of Sec.9.3
holds exactly. In this casethe rst pulse measuremen A; and B; both have zero
mean and variance 1+ - 2 (which we already showved in Fig. 9.2). The second
measuremeh variables A, and B, will theoretically ful'l

C2A 2B
hA,i = ! and MB,i= L
1+ .2 1+ -2
H 2p, 2, 1 2 1402 (940
Var A211+‘2 =Var Bjj 7 :1+1+.2:1+_2:

For the variancesof A, (or By) minusthe meanvalue the term 1is the light noise
cortribution of the secondpulse and the term - 2=(1 + - 2) is the variance of the
createdentangled state. If by measuremets and statistical calculations we could
con rm these results we would have proved experimentally that the entangled
state was created. Let us also here discussthe expected variance of the second
measuremeh alone. We would obtain

L2 H 2 ﬂZ

— — 2 ) — 2.
Var(A;) = Var(By) = 1+ 1T +(1+ -9 1r.2 ° 1+-- (9.41)

.2
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The term 1 is the shot noise of the secondpulse, the term - 2=(1 + - ?) is the
variance of the created entangled state, and the last term arisesfrom the fact
that the meanvalueof e.g. A, israndom, A hasvariance 1+ - 2 and the correction
factor - 2=(1+ - 2) must be squared. The result is 1+ - 2 which is the sameasthe
varianceof the rst pulse. This fact re°ects the QND nature of the measuremeh
If we perform a measuremeh and if a "secret" obsener had already performed
the samemeasuremei on the spinswithout telling usthe outcomewe would not
be able to notice.

Now, the pure state model and its implications discussedabove need not
hold. The model could simply be wrong, or sewral physical e®ectscould change
the picture. For instance if decoherencds strong betweenthe rst and second
measuremeh pulse entanglemert could be hard to obsene. In order to apply
the above considerationsin a more realistic setting we assumemore generally
that the 'rst measuremen (A;;B;) createsa state with meanvalue (®RA1;®B;)
and variance Var(Jy; + Jy2) + Var(Jy1 + J32) = 23 ¢¥2. In this casewe can
estimate ® and %% by performing a large number N of measuremets ead giving
results (A1[i]; B1[i]; A2[i]; B2[i]), wherei is indexing the di®eren measuremets.
The variables A,[i]i ®A;[i]and B;[i]j ®B1[i] will have zero mean and variance
1+ %% in units of shot noise, the term 1 arisesfrom the shot noise of the second
measuremen We calg\ulate

1

X X '
1+ 9% = NT 1 (Azlili ®A4[i)* + - (Bafi]i ®B1[i])* ; (9.42)

where ® must be chosensud that the right hand side is minimal. The minimiza-
tion procedureis equivalent to a linear 't through (0;0) if we plot the second
pulse results A, and B, versusthe rst pulseresults A; and B1. If %% is below
the level of the coherert spin state - 2 (symbolized by the atomic part above
the dashedline in Fig. 9.2) we have created an entangled state. In Sec.10.4
we discussexperimerts connectedto this method. In Sec.10.1 we discussother
experiments where we for technical reasonsdid not have the ability to utilize the
above method but we were able to estimate the varianceof A,j A; andBsj By,

i.e. we were forced to put alpha to unity. In this casewe have
|

1+ % . 1 X (A2fi]i A [i])2+)(\I (B2[ili B [i])z. ; (9.43)
4 Ny 1 el A . 2[lfi Ba ; .

i.e. our estimation of the entangled state varianceis not optimal but put an upper
bound on ¥£ which is suzcient for entanglemert demonstration. Note, our pure
state model predicts ® = - 2=(1 + - ?). The simple method with ® = 1 should
work best for a large atomic to shot ratio, - 2 A 1.

9.6 Entanglement Generation and Losses

Let us discussthe role of lossesfor the generation of entanglemert. Consider
Fig. 9.3 where we place two spin samples1 and 2 next to ead other and shine
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D E
A A i(t)/  Sget(t)

Jx;l JX,Z

Figure 9.3: Light is propagating through two cells with macroscopicspins Jx;
and Jy, oriented along the x-axis. We parametrize the loss between the two
cellsby “; and the lossesafter the secondcell by ", (also including the detector
exciency). The detector measuresthe Qy-componert of light.

a pulse of light through them as usual. We assumelossesto be presen between
samples1 and 2 modeled by the transmission exciency “; and betweensample
2 and the detector modeled by “,. In this casethe Stokesoperators of light will
transform according to Egs. (A.15) and (A.16). If the light before sample 1l is
described by SI' S, §", and SI', we may show that

S =71 ,S, . ) (9.44)
é}c]jet — 'l’zé)i/n + a1 25 j\zl(t) + J\zz(t)
r r

1(1 12 1)Sx Qo+ 2(1|2 2)Sx 05 (9.45)
for the light reacing the detectors. The strong Sy-componert is attenuated by
the overall exciency ;" ,. The éy componert consistsof the attenuated input
“eld S, areadout of Jy; + J» with someattenuation, and nally someadded
vacuum noise described by operators \'7y1 and Oyz (seeSec.A.4). Evenin the
caseof losseshetween samples1 and 2 ("1 < 1) we readout 851 and 5, with
equal weight. Atoms will seethe badc action from the $,-componerts which at
sample 1l and 2 amourt to

+ 7

gl t= &, (9.46)
r
. A “1(1i "1)S .
geell2 = - & 4+ fx\?zl. (9.47)
Sincethesetwo are di®erer, there will not be a perfect bad action cancellation
in the caseof opposite spins (Jx1 = | Jx2 = Jx). The ewlution of spins can

be found by time integration of Egs. like (4.4-4.7) which is straightforward but
cumbersome. We will not carry out the calculations here but just state the
results.

2 If we preparetwo coherert spin stateswith x-componerts Jy; and Jx» like
in Fig. 9.3 and if we perform measuremets like those described in connec-
tion to Eq. (9.39) we do not expect the measurednoiseto depend linearly
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on the spin magnitude, a quadratic componert is added. This quadratic
cortribution arisesfrom the non-perfect cancellation of badk action noise.

2 The optimal balancing of spins which reducesthe quadratic cortribution
most is having Jx1 = j Jx2. This is independert on " ;.

2 The shot noise measuredon the detectors depend only on the number of
photons received by the detector.

2 In the caseof balanced spins Jx; = j Jx2 = Jx the measurednoise (in
units of shot noise)follows Eq. (9.48) below. Here we de ne PN/SN asthe
projection noise(PN) to shot noise(SN) ratio. This increasedinearly with
Jy. The result PN/SN = -2 = a25,TJ, in caseof no lossesis modi ed to
PN/SN = "1 ,- 2.

. M
. PN 1 "¢ PN
M =1+ — + hl
easurednoise SN 127, SN

12

(9.48)

The quadratic term vanishesif “; = 1, then bad action cancellation is perfect.
The front factor 1=12 ;" , is valid for a quantum noise limited §Z-componert of
light. If there is additional classicalnoise from e.g.the laserthe detected badk
action is larger.

For entanglemert generation, the non-canceledbacdk action noiseleadsto the
fact that we cannot measureJy; + J, without disturbing J;1 + 552 to someex-
tent. Sinceback action noiseincreasesquadratically with Jy this is an increasing
problem for increasing PN/SN ratios. At the sametime, a large PN/SN ratio is
required in order to generatestrong entanglemernt aswe saw in the previous sec-
tions. Hence,avoiding lossesbetweensamplesl and 2 and a good spin balancing
is important for excient entanglemert generation. On the other hand, for weak
entanglemert with small - 2 we should not worry too much about the badk action
cancellation.

9.7 The Atomic Pro jection Noise Level

In previous sectionswe discussedthe entanglemert criterion (9.3) and its cali-
bration by linearity of the spin projection noiselevel like depicted in Fig. 9.2 and
discussedin Sec.9.5. The linearity of the obsened noiseis a strong indication
of the quantum projection noise. For instance, all technical noise sourcesfrom
external “elds acting on the spin state would cortribute to all atoms and lead to
extra noisewhich scalesquadratically with the atomic spin Jx. However, having
support from theoretical estimations on the ratio of atomic to shot noise - 2 will
always be welcome. This sectionis dewted to such an estimate.

Wewish to utilize the DC-Faraday e®ectdescribedin Eq. (6.9). If abeamwith
linear polarization is propagating along the x-direction (along the macroscopic
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spin) the direction of polarization will rotate by an amount

a.]_o N 2\])( .

—_! 9.49
167Ac0¢ ( )

Hoc [rad] =
This is Eq. (6.9) multiplied by the e®ectiwe transverseareaAge Of the vapour cell
in the numerator and denominator and we exploit the fact that %2AeL H\i = Jy.
From Sec.9.4 we know that in the rotating frame we expect atomic to shot noise

ratio
alJ

X
2
In the last step above we assumedthat the a = ° 2a;=8YA.e¢ really is the
correct a to insert in the equation for - 2. The probe beam does not have cross
section A = Age but somewhatsmaller (typically around 50% of that area). An
argumert in favour of using A.e anyway is the fact that atoms move in and out
of the beam leading to an e®ective smaller interaction strength since atoms are
inside the beamon averageduring time T tA=A.e. If this modelis valid we arrive
at following estimate for - 2

2= @%S,TJy = 2aS,T

= 2aS; T pc [rad]: (9.50)

2 18:6 ¢P[MW] ¢T[ms]¢a; (¢) Cupc [ded
- ¢ piue [MHZ] '

(9.51)

We corverted pc into degreesinstead of radians, P is the power of the probe, T
the time duration of the pulse, ¢ yue = j ¢ the blue detuning, and the parameter
a; wasde ned in Eq. (5.16). We connectedS, = (photon °ux) =2 = P=2h! where
I = 2% = 2Yg=, is the optical frequency of the laserbeamand , = 852nmis
the wave length. We alsoinserted L = 3:0cm and Aee = 6:0cn?. All parameters
on the right hand side are easyto accessexperimentally and serwe as a good
estimate for the ratio - 2. In addition to the above equation we should remernber
that - 2 is reducedby lossesand detector inexciencies, seeSec.9.6.

An alternativ e estimation method is to perform absorption measuremets to
‘nd the density of atoms in the vapour cell. This leadsto an estimate for Jx
which again estimates - 2 = a?S, T Jy.
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CHAPTER 10

Exp erimen tal Generation of
Entangled States

In this chapter we demonstrate the generation of entanglemert. This is the most
important result of this thesis, the experimental work was done in 2001 and
we dewote Sec.10.1to the discussionhereof. The results are published in [l].
The experimental setup of this experiment deviates a little from the discussion
of Chap. 4 and we commert this when appropriate. After the 2001 entangle-
ment experiment we decidedto rebuild the setup for reasonsthat we discussin
Sec.10.2. On top of this we moved our laboratories twice, onceinternally at the
Department of Physics and Astronomy at the University of Aarhus, and then
from Aarhus to the Niels Bohr Institute at CopenhagenUniversity.

This new experimental setup hasat the time of writing not yet demonstrated
erntangled states for various reasonsbut the problems encourtered on the way
have in somecasesbeenvery interesting. We describe someof these problemsin
Sec.10.3. In Sec.10.4 we discussthe presen state of the entanglemert experi-
ment. We concludethis chapter in Sec.10.5with a summary of our results.

10.1 Entanglemen t Demonstration

Let us now turn to the experimental demonstration of entanglement generation.
The experimental setup is shavn in Fig. 10.1, this is a little di®erert than the
setup mertioned in Chap. 4. Here two cells are situated next to ead other, they
are not placedin their own magnetic shieldasin Fig. 4.5. Also, the timing of laser
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Figure 10.1: Experimental setup for entanglemert generation. In this experiment
the vapour cells are situated next to ead other. The cells can be surrounded
by a solenoidand a magnetic shield (not showvn here). The laser settings are as
described in Sec.4.1 but the timing is controlled by a chopper. A noise detec-
tor monitors the classical noise of the probe laser. After the probe laser from
the ti:sapphire laser has passedthe atomic samplesits éy-componert is mea-
sured. The coil generatingthe RF-magnetic "eld for spin state characterization
(Chap. 7) is partly visible above the cells.

pulsesis cortrolled by a chopper. The probe laseris detuned by ¢ = j 700MHz,
the duration is Tprop e = 0:45ms, and the power is P = 5:0mW. The optical pump
laseristuned to the 6S,-,;F = 4! 6P,-,;F = 4transition andthe repump laser
is tuned to the 6S;-,;F = 3! 6P3-5;F = 4 transition asdescribedin Sec.4.1.
The duration of pumping is Tyump = 0:45ms. The total experimert cycleis 2ms,
it is shavn in Fig. 10.2(b). The polarization of the probe laseris 54* with respect
to the direction of spin polarization. According to Eq. (6.24) this is the condition
for having no Stark shifted Larmor frequencies. From Eq. (6.19) we also know
that this setting is vulnerable to excesslaser noise. For this reasonwe use a
photo detector for monitoring the classicalnoise of the probe laser as shown in
Fig. 10.1. If the classicalnoiseincreasestoo much we simply wait for it to settle
down again before contin uing experimerts.

The magnitude of the spin componerts Jx; and Jx, are measured(on a rel-
ative scale) by the magneto-optical resonancemethod as described in Chap. 7,
especially by some of the pulsed methods mentioned in Sec.7.5. The spin co-
herencetime is also measuredby MORS, in absenceof laserswe typically 'nd
T, = 15j 30ms. At the time of this experiment we had not deweloped the DC-
Faraday measuremen for direct measuremen of J4; and Jy,. The absolutevalue
ofthe spinsJyx1 = j Jx2 = Jyx is estimated by measuringthe optical depth ® of the
atomic samplewith a weak, resonar, non-saturating probe beam. The optical
depth relatesinput intensity 1 to the output intensity | by | = Igexp(j ®). The
density Y20f atoms can then be found by ® = %3 where L is the samplelength
and the relevant crosssection % for our Doppler broadenedatoms is estimated
by %=, 2=2Y/° =#°. Here° is the optical line width, +°p is the Doppler width,
and , is the optical wave length. With Doppler broadening presert, roughly a
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Figure 10.2: (a) The signal road from balanceddetectorsto noisevariance esti-
mation. The photo current passesa signal gate which may include or excludeany
of the two pulses. The HF lockin ampli er demadulates the signal at the Larmor
frequency-. The sineand cosinecomponerts at - from the HF lockin ampli'er
are fed into two LF lockin ampli ers demodulating the signal at the cycle fre-
guency 500Hz. The outputs are averagedand squaredin an oscilloscope. (b) At
the bottom is shawvn the laser pulse sequence.The pump and probe lasersboth
have pulse durations 0.45ms. The total cycle is 2ms. Above this is shovn the
corresponding local oscillator eld for the LF lockin ampli ers. Further above is
shavn an exampleof HF lockin output. Mixing thesewith the LF local oscillator
will lead to estimation of A; and B; for a one pulse experiment and of A; j A
and B; j B, for a two pulse experimert.

fraction °=#p of the atoms are on resonance. This method is a bit crude and
hencewe should not trust the magnitude in absolute units to better than a factor
of 2-3. But on the relative scalewe still estimate to have 5% precision.

The spins must be balanced with opposite orientation, Jy; = j Jx2. This
is done by simultaneously measuring MORS for the two samples. The MORS
should vanish when the spins are balancedif the pumping conditions are sim-
ilar and if the Larmor frequenciescoincide. We estimate this can be done to
a precision of 5%. Rough adjustments of spin magnitudes are controlled by the
temperature of the vapour cells. Fine tuning is performed by adjusting the power
of the repump laser. The two Larmor frequenciesare adjusted to coincide by a
small extra coil next to one of the cells (a black wire is visible on the left cell
in Fig. 10.1). The orientation is also estimated by measuring MORS, for this
we increasethe magnetic "eld by roughly a factor of two to better resole the
guadratic Zeemane®ect.

When the probe light has passedthe two atomic samplesits éy-componert
is measuredby a set of balanced noise detectors. The di®erertial photo current
is then handled as shown in Fig. 10.2(a). First, an electronic gate turns on or
o® the obsenation of the two pulses, for CSS noise calibration we only need
the rst pulse, and for ertanglemert estimation we needboth, seediscussionsin
Sec.9.5. Then the gated photo current is fed into a high frequency (HF) lockin
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ampli'er. The local oscillator of this is adjusted to the Larmor frequency of the
atomic samples. The two outputs of the HF-lockin ampli'er deliver the sineand
cosinecomponerts of the photo current, or in other words, a signal dependert on
I, + 32, and I, + J2,, respectively, seediscussionin Sec.9.4. Thesesignalsare
taken to two low frequency (LF) lockin ampli ers the local oscillator of which
is a sine wave running at the chopping frequency 500Hz corresponding to the
experimental cycletime of 2ms. The demodulation at this frequencyensuresthat

in atwo pulseexperiment, the value of the two measuremets are subtracted from
eadt other. This is also illustrated in Fig. 10.2(b). Now, by setting the lockin

amplier in \r"-mo de (deliveringsthe magnitude of the fequency componert at
500Hz) we obtain after squaring (A1[i]li Az[i)?and ,(B4[i]i B2[i])? in the
language of Secs.9.4 and 9.5. This is exactly what we need for entanglement
estimation accordingto Eq. (9.43). To be complete, for the LF-lockin ampli er

to work properly, we need to integrate over a time duration longer than 2ms
(otherwise a 500Hz frequency componert cannot be singled out). This means
that we really average over some pulses (maybe 5-10) before squaring in the
above sums. This is perfectly OK for independert measuremets.

Now let us concerirate on the noiseresults. We start out by one pulse mea-
suremers and move the Larmor frequency - far away from the local oscillator
frequencyat 325kHz. Then we only measurethe noiseof light, and we ched that
the éy-measuremen is limited by shot noiseby observingthe linear dependence
of the noiseon the probe power.

Next, we move the Larmor frequenciesof the two atomic samplesbadk to
coincidewith the local oscillator at 325kHz. The spinsare balancedwith opposite
orientation and with magnitude Jx. The noise properties of the CSSis now
measured,the result is shavn in Fig. 10.3(a). On the abscissais the magnitude
Jyx and on the ordinate we plot the variance of A; plus the variance of B1, and
we normalize this to the result for shot noise of light. We seethat for low Jy
the measuredpoints depend linearly on J, which is the "ngerprint of the atomic
spin projection noiseaccordingto the discussionaround Eq. (9.39) and Fig. 9.2.
We make a't to the linear part of the graph which is now our calibration for the
CSSnoiselevel. The non-linear part for higher J, may arise from non-canceled
bad action, pile up of technical noise, etc. We do not know in detail the source
of this extra noisebut this is alsoirrelevant. The important point is the fact that
we reached the linear dependencefor our calibration. We note, that the slope of
the linear t is 0.81 when Jy is measuredin units of 102, We compare this to
the theoretical value - 2 = a?S,TJy, wherea = °, 2a;=8%¥A.e¢. Inserting the
correct detuning and Age ¥4 6:0cn? we obtain - 2 = 0:83¢J,[10?] which is close
to the measuredvalue. But this excludesthe e®ectof lossesand we remenber
that our estimate of Jx in absolute units is quite crude. We only conclude that
we nd agreemen within the right order of magnitude for - 2.

Next, we turn to the two pulsesexperimert for demonstrating the entangle-
ment generation. After ead pumping pulse we shine two pulsesof light through
the samplesto measurethe spin componerts ff,’l + J\QZ and J?, + J9, twice. There
is a 0.5msdelay betweenthesetwo pulses. The resulting noise of the di®erence
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Figure 10.3: (&) The measurednoise (squares)in a single pulse experimert, the
noise variance is normalized to shot noise. On the abscissawe plot J, and
for Jx = 0 we measurethe shot noise of light. We seethat the noise variance
increasedinearly with Jy which is the "ngerprint of the quantum projection noise
of the atomic spins, seethe discussionconnectedto Eq. (9.39) and Fig. 9.2. The
straight line is a 't to the linear part of the data points, the slope is 0.81. (b)

The measurednoise (stars) of the di®erencebetweentwo pulses,here normalized
to the CSSnoise(i.e. divided by the straight line of part (a)). The straight line
1 of part (a) hasuncertainty in the slope which we recalculateinto the error bars
in part (b). The data points should fall belonv horizontal solid line in order to
demonstrate erntanglemert, we seethis is indeedthe casefor the points at higher
Jx. The dotted line is the shot noiseof a singlelight pulse,the dash-dotted line is
twice the shot noise. The data points cannot fall below twice the shot noise,the
reasonsfor them being higher than this level are decoherence)osses,etc. The
lowest data point is (368 7)% below unity.

is plotted in Fig. 10.3(b). Here the abscissais asin part (a) of the "gure but the
ordinate is now normalized to the CSSnoiselevel, i.e. every data point is divided
by the value of the straight line in Fig. 10.3(a). In these units the horizontal
solid line is the boundary we have to be below in order to ful'T the entanglemert
criterion (9.3). This correspondsto ¥# < - 2 aswe discussedin Sec.9.5. We see
that this is indeed the casefor the points at higher J, and we have proved the
generation of entangled states. Since we normalize the data points to the CSS
noise level the uncertainty of the slope in Fig. 10.3(a) cortributes to the error
bars of Fig. 10.3(b). The lowest data point is positioned (36 § 7)% below the
CSSnoiselevel.

The dotted line is the shot noise level of light, and the dash-dotted line is
twice this level. In our two pulse experiment we can never obtain data points
below this level sincethe noise of Qi,“ for eat pulseis uncorrelated to all other
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noise sources. In the ideal casewith no decoherencewe should on the other
hand reach down to this level. The exact reasonthat we are not at this level is
unknown but losses,decoherenceand technical noise will play somerole. The
crucial point is the fact that we are below the horizontal line and demonstrate
the generation of entanglemert betweenthe two atomic samples. Sincethe delay
betweenthe two laser pulsesis 0.5mswe know that the life time of our entangled
state is at least that long.

Somecommerts are in place for the obtained results. As we discussedabove,
the fact that the averaging procedure involves seweral pulses before squaring
is OK if the atoms are independert of ead other. From the magneto-optical
resonancemethods we can estimate the refreshingrate j pump Of the optical pump
laser. We know that the transverse spins under in°uence of pumping deca as
Jy(t) = Iy (0) exp(i i pump 1=2). We estimate that j pump Tpump =2 ¥4 1 sothat we
do refresh atoms to a high degree. One may ask whether this level is enough.
The straight line obsenation of Fig. 10.3(a) is a strong indication that we do
refresh the spin sample suxciently, we know that noise piling up in atoms scale
quadratically with Jy.

Another issueis the orientation of atoms. We know that for the lower linear
part of Fig. 10.3(a) it is better than 95%. This is measuredby MORS in a setting
where the optical pump power is reducedto resole the quadratic Zeemane®ect
(in addition to increasingthe magnetic eld). We assumethat a higher optical
pump power will do a better job. A non-perfect orientation comparedto the
100%orientated coheren spin state can be regardedas a thermal excitation and
we expect this state to be more noisethan the CSS.Wetry to deliberately reduce
the orientation and obsene the e®ecton the noise. We do not 'nd any increase
in the noiselevel, however.

10.2 Changing the Exp erimental Setup

The experiments of the previous section are performed in the old experimertal
setup. We decideto changethe experimertal setup for seeral reasonswhich we
will commert on now.

For the mounting and magnetic shielding of vapour cells we refer to Fig. 10.4
where the old and new setups are shavn. In the old setup two vapour cells are
placed adjacert to ead other inside the same magnetic shielding making laser
accessvery cumbersome. In the new setup the shielding and vapour cells are
designedsudh that laser accessis possible from six directions. This setup is
suitable for experiments involving three or four vapour cells (we will discusssuc
experiments in Chap. 11).

On the laser side, in the old setup we use a chopper to corntrol the timing
of pulsesas we discussin Sec.10.1. While being very simple, this setup is not
°exible. We wish to vary the time duration of pumping and probing lasers.
We would also like to vary the delay between various pulsesin order to study
decoherence®ects.In addition, the new setupwith AOMs and EOMs cortrolling
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Figure 10.4: (a) The old experimertal setup. Two vapour cellsare placedinside
the magnetic shielding cylinder shavn. We only have laser accessfrom one end
and needto place mirrors inside the cylinder (seepicture in Fig. 10.1). (b) The
new experimental setup. Here ead vapour cell is situated in its own magnetic
shielding with laser accesdrom six di®erent directions (shown with red arrows).
This setup is more suitable for three or four sample experimerts.

laser pulsesopens up the possibility to shape the temporal prole of the laser
pulse.

What regardsthe data acquisition we would like to implement the weighted
ertanglemert estimation methods of Eqg. (9.42) rather than the more simple
method of Eq. (9.43). The data acquisition system of the old and new ex-
periments are discussedaround Figs. 10.2 and 10.6(a), respectively. The new
acquisition methods also enable us to do more detailed statical analysis on our
data.

We need to control the temperature of vapour cells. In the old setup an
electric heater is placed inside the magnetic shielding. This can in somecases
create magnetic “elds disturbing the experiments and heating has to be turned
on and o® during measuremers. The new setup utilizes water heating/cooling
in an aluminum block asdepicted in Fig. 4.5. As we shall seein the next section
this aluminum also creates magnetic noise and we are preserily working on a
non-metallic temperature cortrol using air °ow.

Moving from Aarhus to Copenhagenalso meart a changein ervironment.
The laboratory magnetic "elds in Copenhagenare more noisy than in Aarhus.

10.3 Magnetic Field Noise

For the experiments we needto exclude external °uctuating magnetic “elds. If
a static magnetic eld is addedto our bias magnetic "eld, the Larmor frequency
- = 325kHz will depend on the external eld. For ertanglemert generation we
needto have a stable Larmor frequency for seweral minutes. In fact, we have
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obsened stochastic changesof the Larmor frequencyat the level of up to 100Hz.
The time scalefor these changesis of the order of 1 secondor slover. These
variations correspond to magnetic eld changesof 0.3 milligauss at the atoms.

The magnetic noiseis much more quiet betweenroughly 1:30amand 4:30am
in the night. This is consistert with the night stand still of the local trains which
arerunning about 1km away from the laboratory at the Niels Bohr Institute. The
variations has beendiscoveredto be in the vertical component of the magnetic
“eld which is shieldedpoorly (only a factor 10-15) by the construction shown in
Fig. 4.5(c). The remedy s to rotate the mounts shown in Fig. 4.5 by 90 degrees,
the shieldshave a much higher exciency perpendicular to the curved surface. So
the problem is eliminated but this story tells us in very understandable terms
that our measuremets are quite sensitive.

Another problem that we have encourtered is °uctuating magnetic “elds at
the Larmor frequency As discussedin Chap. 7, by introducing a time-varying
magnetic eld transverseto the x-axis of spin polarization we modulate the trans-
verse componerts of the spin for atomic spin state characterization. This has
proved very useful, but if °uctuating magnetic elds are presert beyond our con-
trol we encouner problems. In Fig. 4.5(a) we showv how our vapour cells are
placed on an aluminum block. Below we will seehow this aluminum block cre-
ate random “elds disturbing our experiments and we will try to estimate the
magnitude of these elds.

With atoms polarized along the x-axis we are sensitive to magnetic eld °uc-
tuations along the y- and z-axis. With a magnetic eld B presen, the Hamil-
tonian describing the e®ecton the entire atomic spin J reads (to rst order)
B = g-15B ¢J, seeEq. (F.4). With By being our usual static magnetic “eld
we get Larmor precessionand we considerthe rotating frame coordinates J‘;’ and

J‘S. In absenceof decay mechanismswe can easily show that
@ 1gJ .
@0 = FLZ (¢ cos DBL(D) i sin(- DBy (1)

D50 = (1 sinC B 1 cos(- 0B, (1)

(10.1)

where By (t) and B,(t) are the °uctuating magnetic "elds which we assumefor
the momert to be commonto all atoms. We wish to integrate the above equations
formally and calculate the variance of J‘f(t) and J‘S(t). To this endwe assumethat
hBi(t)B; (19i = Sg ¢+(ti t9)4 wherei;j = y;z and Sg is a constart describing
the spectral noiseof the magnetic eld. This kind of correlation assumeshat the
magnetic noise has fast time dynamics comparedto our typical spin ewolution
time. Then we obtain

D E H_, 2

= J20) + * hBJX Set;

D E D E Hgigd P (10.2)
Fm = JPO) + TP set

D E
& (1)
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Figure 10.5: The measurednoise of a single pulse experiment with a single cell
prepared by optical pumping. On the horizontal axis is the delay time between
the pump pulse preparing the spin state and the probe pulse measuringthe spin.
The noiselevel is believed to be closeto the CSSlevel at t = 0, and the linear
increaseis attributed to the noisegeneratedby random magnetic “elds. For this
experiment pr = 13:9* and ¢ = j 875MHz. Removing the aluminum block also
removesincreasein the noiselevel.

We seethat the variance of J? and J? increaseslinearly with time. In Fig. 10.5
we show the results of an experiment con rming this behavior. For a single
spin sample we prepare the coherert spin state as good as we can with optical
pumping. Then we wait time t (called the pump-probe delay) before shining a
pulse measuringff,’ and J‘f The measuredvariance is shown in Fig. 10.5as a
function of t. The units on the vertical axis is the shot noise level of light. We
believe that 0.50is not far from the CSS noise level and we conclude from the
data that the slope of the increasing noiseis 128¢ ! in units of the CSSnoise.
Sincethe CSSvariance of f;,) and J\? is Jx=2 we get from Eqg. (10.2) the theoretical

slope

3

1 ,2
Slope= 23,55 ¥ B

h
in CSS noise units. To calculate our experimental estimate of Sz we need to
‘nd Jx. With ¢ = j 875MHz and a DC-Faraday measuremen of pr = 13:9* we
Td by Eq. (6.9) that J, = 1:5¢10'2. Then we derive Sg ¥4 9 ¢10 32Teslds.
The noisein a bandwidth H is Sg+ where ! is measuredin rad/s. Taking
the squareroot and converting to Hz we conclude that pur approach estimates
magnetic "eld °uctuations of magnitude 7 ¢10 °Tesla= Hz.

Our assumptionthat all atoms experiencethe samemagnetic eld is probably
wrong, and accordingly the real °uctuating “eld is probably higher than our
estimate. In [69] the random magnetic "eld from a metal Tling one half plane

(10.3)
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(e.g.x < 0 asin our case)is discussed.The origin of these elds is the thermal
random currents inside the metal. At a certain point in space(x;y; z) with x > 0
their Eq. (10) reads

z 1 12] 2
. Feh2gim2(l)
detBi(t+ ¢)Bj(iy € ¢ = D——
i1 T 1j ei ' =keT 16V (10.4)
31%?/®kBT+_ for iti=vz
32K =y
wheret; = 3=2fori = j = y;z. The approximation after the arrow assumed to

be much slower than the inverseof the electron relaxation time scaleg, in order to
connectthe relative permittivit y 2(! ) to the DC-conductivity ¥ of aluminum by
simple Drude theory Im2(! ) = ¥=2;! . We also assumethe typical energyto be
lessthan thermal °uctuations h! ¢ kgT. Theseconditions are easilyful'Tled for
I ¥4 325kHz. According to the above our approximation hB; (t)B; (t9i = Sg ¢(tj
t94; is valid. Inserting rel%vant values, including x |164 L = 3:0cm, we calculate
the theoretical estimate of = Sg = 1:2 ¢10 2Tesla= Hz. We seethis number
is more than two orders of magnitude higher than our experimental estimate.
This is probably an e®ectof us neglecting spatial correlations. Furthermore, the
result for a half plane Tled with metal must overestimate the "eld somewhat.
We can proll}pm/ concludethat the "eld seenby our atoms is somewhereabove
10 3Tesla= Hz which still is a small "eld. We do indeed perform quantum
limited measuremeis of magnetic elds and further study of ultimate sensitivity
could be interesting. For our entanglemert generationwe learn that metal should
be avoided closeto our atoms.

10.4 Weighted Entanglemen t Estimation

In this section we describe someaspects of our seart for entangled states with
our newer experimental setup. We place the atomic vapour cells in mounts as
depictedin Fig. 10.4(b) (but rotated by 90 degrees).The separation betweenthe
two setupsis roughly 30cm. We shine the probe laser as usual to measurethe
transverse componerts of the atomic spins, and we may also direct part of the
probe laser along the direction of the macroscopicspinsin order to measureJy
directly. Then we have the full capability to characterize the spin states by the
methods of Chap. 7.

After the probe laser has passedthe atomic spinsthe éy-componert is mea-
sured giving photo current i(t). The following data handling is depicted in
Fig. 10.6(a). The HF lockin ampli'er givesasoutputs sin(- t)i(t) and cos(-t)i(t)
which areintegrated in a homebuilt integrator over the probe pulseduration with
results A and B, seeEqgs. (9.32) and (9.33). Thesenumbers are stored in a com-
puter and we can processthe data afterward. An example of such processing
is the analysis discussedin connectionto Eq. (9.42) and shown in Fig. 10.6(b).
Here we seethe result of the secondpulse measuremen A, plotted versusthe rst
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Figure 10.6: (a) Sdematic view of the signal processing (compare to
Fig. 10.2(a)). The di®ereriial photo current from the detectors is demodulated
in the HF lockin amplier to give the sine and cosinecomponerts at the Larmor
frequency- asoutputs. Theseare integrated and we obtain two numbers A and
B bearing information about the spin state, seeEgs. (9.32) and (9.33). For eath
probe laser pulse these numbers are stored in a computer and can be used for
further analysis. (b) An example of correlations betweenthe rst and second
probe laser pulse giving results A; and A,. We plot A, versusA; (10.000points)
and perform alinear 1, this is exactly the method described around Eq. (9.42).
We seethe slope ® = 0:181is non-zero,the rst pulse result can clearly be used
to predict to someextent the secondpulse measuremeh

pulseresult A;. If atomic noiseis much greaterthan shot noise,and if everything
elseis ideal, thesepoints should be on a commonstraight line through (0; 0) with
unity slope. In other words, the QND measuremeh would be perfect and the
two measuremen results should be identical. But in the casewe describe in this
section we have atomic noise lessthan shot noise, the scattering of data points
in the Fig. 10.6(b) demonstratesthis. We perform a linear 't of the data and
get a slope of ® = 0:181 along the lines of Eq. (9.42). The non-zeroslope clearly
indicates a correlation betweenA; and A, (and a similar plot canbe madefor B;
and B,). The question is, are these correlations strong enoughto demonstrate
ertanglemert following the criterion (9.3)?

The answer to this question follows from a thorough analysis as described
in Sec.9.5. First, we must calibrate the noise level of the coheren spin state
(CSS). This is done by measuringthe variancesVar(A1) + Var(B;) asa function
of the magnitude Jx of the oppositely oriented macroscopicspins. This is plot-
ted in Fig. 10.7(a) with black squares. The shot and electronic noise has been
subtracted, i.e. we only plot the atomic noise (normalized to shot noise). On the
horizontal axis is the DC-Faraday angle = which we remember is proportional
to Jx. The solid line is a linear 't through (0;0) of the black points, and it
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Figure 10.7: Data demonstrating the weighted method of entanglemernt estima-
tion discussedaround Eqg. (9.42). (a) We vary the magnitude Jx of the macro-
scopic spin and measurethis conveniertly by the DC-Faraday rotation angle
e, seeEq. (6.9). Against this is plotted with black squaresthe atomic noise
variance of the rst pulse, with red triangles the secondpulse noise, and with
greenstars the weighted method estimate %% of the state generatedby the rst
pulse. The straight line 't (solid line) is a calibration of the CSSnoiselevel, and
with the greenstars above this level our data shows no ertanglemert. The fact
that the red triangles are above the black squaresindicate decoherencetechnical
noisepile up, or the like. (b) The experimental "tting parameter ® (squares)of
Eq. (9.42) versuspe and the theoretical estimate ® = - 2=(1 + - ) (solid line) in
the ideal casewith no lossesor decoherence.We seethat in somesensewe are
only e®ectie to the level of 50%.

senesas calibration of the CSSnoiselevel. For the experimental points shavn
we used laser detuning ¢ = j 875MHz, probe power P = 4:0mW, and probe
duration Tpope = 650t's. The probe laser is polarized along the x-axis parallel
to the macroscopicspin direction, we wish to examinethe setting where classical
laser noise is least likely to play a role according to Eq. (6.19). The setting of
the optical pump and repump lasersare as described in Sec.4.1.

We now use Eqg. (9.51) to estimate the slope theoretically. We nd the ex-
perimental slope to be 48% of the theoretical. If loss of light occurs between
the vapour cells and betweenthe cells and detectors the theoretical level should
be decreasedcorrespondingly, seeSec.9.6. But a 52% overall lossis more than
expected, a level of 20% would be more acceptable. We concludeeither that the
simple theoretical estimate of Sec.9.7 is good only within a factor % 2, or that
there e®ectively may be more lossesthan we expect.

Now, in the languageof Sec.9.5 the straight line of Fig. 10.7(a) calibrates - 2
and the weighted method of Eq. (9.42) determinesthe slope ® (seeFig. 10.6(b))
and the variance %% of the possibly entangled state. The value of %7 is plotted
in Fig. 10.7(a) with greenstars and ® is plotted in Fig. 10.7(b). Sincethe green
stars are not below the straight line we have no entanglemert in the example
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shown, i.e. we do not have %% < - 2.

The reasonsfor the lack of entanglemert is the subject of current investigation
and at the time of writing it would be mostly speculation to point at a speci ¢
problem. Howewer, we know (without going into details here) that we have
not been aware of the full implications of the Stark shifted Larmor frequency
discussedaround Eg. (6.24). Also, the value of the “tting constart ® plotted
in Fig. 10.7(b) is roughly 50% of the ideal casetheoretical value - 2=(1 + - 2),
seeEq. (9.38). This indicates that the information provided by the “rst pulse
(A1;B1) is only \half asgood" aswe expect in the ideal case.

Yet another indication that we are further away from ideal measuremets
that we would like is the fact that the noise variance of the secondpulse alone
(Var(A;) + Var(B,) minus shot noise) showvn with red triangles in Fig. 10.7(a)
is at a higher level than the “rst pulse variances. This indicates either technical
noise pile up, decoherencepr maybe non-canceledbadk action. Further study is
required to understand the decoherencemecanismsbehind our data.

But we certainly do concludethat we are not far from observing the entan-
glemert in the new setup. The measuremenh apparatus works well and supplies
us with useful information for understanding the decoherencemechanisms. We
also await the possibility to go to higher - 2 when our hot air heating system
is up running (we removed aluminum heating systemsfor reasonsdiscussedin
Sec.10.3).

10.5 Discussion of the Results

Let us discussand summarizethe results of this chapter. First of all, the experi-
mental results given in Sec.10.1 demonstrate the generation of entangled states
betweentwo macroscopiccesiumgassamples. This is the most important result
of this thesis. The created states have in the best casea variance ful'Tling

Var(Jys + Jy2) + Var(Jy1 + 832) - (648 7)%¢2J, (10.5)

which should be comparedto the entanglemert criterion (9.3). The 64%= (100
- 36)% arise from the fact that the lowest points of Fig. 10.3(b) are 36% below
the CSSnoiselevel. This experimental estimate is an upper bound sincewe here
did not take into accourt the fact that the initial state is the CSS (this is the
di®erencebetweenEgs. (9.42) and (9.43)).

Our entanglemert livesfor at least 0.5mswhich is a relatively long life time
for atomic systems. With our old experimental setup this delay is cortrolled by a
chopper and we do not have much °exibilit y to test other delays betweenthe rst
laser pulse creating the entanglemert and the secondpulse necessaryto verify
the generation of an entangled state.

We note the fact that the entangled state is created on demand, we perform a
measuremeh with a laser pulse and this inevitably drivesthe spin samplesinto
the ertangled state. The mean values of Jy; + J,, and J;; + J;, are random,
they will be distributed within the CSS variance and can be extracted from
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the integrated photo current of the detectors measuring éy This is directly
implemented in the newer experiments. The meanvaluesare necessaryfor future
work like teleportation of atomic giates(seeghap1). To createentangled states
with de'nite mean values, e.g. Jy1+ &y, = Jyi+ Iy = 0, requires the
rotation of the spin state by e.g.a magnetic eld. This is still to be implemented.

We have chosento rebuild the entanglemert experimert to make it more suit-
able for future teleportation protocols,seeChap. 11. This includesthe separation
of vapour cells to larger distances, designand build up of new cell mounts and
magnetic shields, more complicated data acquisition and analysis, and installa-
tion of new vapour cells. This processhasinvolved many technical problemsand
challenges,a few interesting onesare discussedin Sec.10.3. With the new setup
we have reached the CSS noise level for weighted entanglemert estimation, see
Fig. 10.7(a), or in other words, equality of the criterion (9.3) has beenreaded
and generation of entangled states should not be far away. This setup will also
enableus to perform detailed study of the decoherenceof entangled states since
we will be very °exible in the timing of laser pulses.
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CHAPTER 11

Quantum Information Proto cols

In this chapter we discussvarious protocols for quantum communications pur-
poses,this includes the concept of teleportation which is the transport of an
unknown quantum state from one place (which we call Alice's place) to another
(which we call Bob's place). According to the no-cloning theorem [2] a quan-
tum state cannot be copied. As a result, in the teleportation processwe are not
allowed, even in principle, to obtain any information about the initial quantum
state to be teleported from Alice to Bob. If we obtain someof this information,
the exact sameinformation cannot be sert to Bob. This fact imposessomere-
strictions on the \handling" of the quantum states and we must follow a certain
protocol. A very important resourcein sud protocols is the use of entangled
states, just like the oneswe demonstrate in Chap. 10.

A protocol for teleporting the state of a spin-1/2 system was discovered in
1993[70] and di®erent experiments along these lines have been carried out [26,
27, 29]. Teleportation of corntinuous variables was proposedin 1994[71], and the
experimental demonstration of contin uous variable teleportation for quadratures
of the electromagnetic eld was demonstrated in [25]. Parts of the contents of
the presern chapter has beenpublished in [IV].

Experimental studies of teleportation will in practical life have somelimita-
tions, therefore it is corveniert to de ne the delity F asa gure of merit for
the teleportation protocol

- -t e
®2 or F = Average A" %A" ; (11.1)

F = Average AN Ao

—. ®
wherethe input state is described by the wave function A™ and the output state
by wave function jA°“i or in the caseof a mixed state by the density operator
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Figure 11.1: (a) The teleportation protocol. Alice hastwo spin samplesl and
3, the quantum state of sample 3 is unknown and we wish to teleport this to
Bob's sample2. First (marked with an arrow containing the number 1) erntangle
sample 1l and 2 by a laser pulse. Next measurethe joint state of sample 1 and
3 by a similar laser pulse. Last we need by classicalcommunication to transfer
numbers A, and B, from Alice to Bob. This information is required to complete
the teleportation. (b) The delity F of the teleportation protocol as given by
Eq. (11.5). The F = 1=2 and F = 2=3 limit are reached by -2 = 1:62 and
-2 = 3:56, respectively.

% The averageis performed over input states. If F = 1, then all input states
are teleported perfectly from Alice to Bob. To exceedthe limit F = 1=2 for any
coheren state we needquantum ertanglemert, hencethis is a boundary between
classicaland quantum communication [72]. If in addition the limit F = 2=3is
reached we can be sure that the teleported state is the best existing \copy" of
the initial state [73].

11.1 Teleportation of an Unkno wn Spin State

Let us now turn to the protocols for teleportation of spin states. The analysis
of contin uous variables teleportation for quadratures of light in realistic experi-
mental conditions is given in [74], here some calculation methods for Gaussian
cortinuous variables are also outlined. A proposal for spin state teleportation
was given in [62] and in the following we review the basic principle behind.
Consider Fig. 11.1(a) where three vapour cells cortaining cesiumare drawn.
Cell 1 and 3 are placed at Alice's site while cell 2 is placed at Bob's site which
in principle can be far away. We prepare the atomic spinsin thesethree cellsin
coherer spin statesalong the x-axis asusual such that Jy; = Jx, Jx2 = | Jx, and
Jxz = i Jx. Then two adjacert cells will be polarized along opposite directions.
The interesting quantum variables are as always J\y and J; (we work in the
rotating frame but leave out the primes which will be used for other purposes
below) and the aim now is to teleport an unknown state of sample 3 described
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by operators Jy3 and J}3 to sample2.

The rst stepis to entangle the spinsin sample1 and 2 by our well known
methods from Chaps. 9 and 10. We assumethe atomic to shot noise ratio to
be very large (-2 A 1) sud that we essetially perform perfect measuremets.
Firing a laser pulse through cells 1 and 2 yields results

\j\yl + \j\yg = A; and \j\zl + \],\22 =B, (112)

which holds as operator equations for ideal measuremets, sample1 and 2 have
changed from independert coherent states into a highly entangled state with
Var(Jy; + Jy2) = Var(J1 + J32) ! 0.

The next step is to re a similar laser pulse through sample 1 and 3 to
perform an ideal measuremen of the spin componerts. We let primes denotethe
operators at a time after this secondmeasuremeh and the primelessoperators
refer to operators on spin states before the measuremeh We have

J,\y]_ + \]’\yg = \]’\31 + \]’\;)3 = A, and Jl\z]_ + \],\23 = ‘],\?1 + j?:g = Bj,: (113)
Note that badk action noiseis piled up in both spins 1 and 3 such that these
individual spins are changed dramatically, i.e. 3% = Jy1 + BAN and J% =

J‘yg + BAN and similarly for z-componerts. Here BAN meansback action noise.
The sum of primed and unprimed operators are identical, this is the QND nature
of the measuremen causedby the bad action cancellation. We thus measure
the properties of the initial state of sample3 plus the entangled state of samplel
with sample2. At the sametime J?, = J, and J2, = J3», there is no interaction
going on at sample2. Now, the nal state of sample2 can be deducedby

J\f,)z =Jo=Ari Ji=Rai (Azi Aw);

11.4

3%, =52=B1i J1=Jusi (B2i By): (4
Here j\yg and J}3 refer to the state of sample3 beforethe ring of the secondlaser
pulse. The secondequalities hold as a consequenceof the initial entanglemert
between sample 1 and 2, seeEq. (11.2). The third equalities follow from the
result of the secondQND measuremely, seeEqg. (11.3). We seethat to complete
the teleportation we needto add the numbersA, i A; andB,i B; to J‘;’Z and

.f?z, respectively, which can be done by suitable magnetic "elds. The numbers
A, and B, are completely random and without theseBob hasno use of the spin
state of sample 2. For Bob to know these numbers we must establish classical
communication betweenAlice and Bob. The initial state of Alice's sample3 has
been destroyed by pile up of badk action noise but has also beenrecreated in
Bob's sample 2.

Note, the initial entanglemert between samples1 and 2 could have been
prepared while the cells were sitting next to ead other. Then one sample could
be moved far away, and the rest of the protocol could proceed. This approac
of course involves some technical problems (e.g. the magnetic "eld should be
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carried together with the atomic sample). But it underlinesthe profound nature
of teleportation, when the entanglement has been establishedthe rest is local
measuremets and classicalcommunication.

The above considerationsare worked out for ideal measuremets. For a nite
atomic to shot noiseratio - ? the analysisis covered by [62] which again relies on
the calculations in [74]. We will just state the result, the “delity F is given by*

A T

1 1
F=1 1+1+_2+.—2.

(11.5)

We plot this quantity in Fig. 11.1(b). To overcomethe threshold F = 1=2 we
need- 2 = 1:62. With -2 = 3:56 we may break the F = 2=3 limit. We also note
that for -2 A 1, Eq. (11.5) can be approximated by F ¥% 1| 2=-2. Hence,to
obtain F | 95%we need- 2 , 40. We remind ourselesthat these calculations
areresults of a Gaussianwave function modeling which is similar to our pure state
considerationsfor entanglemert generationin Sec.9.3. The only non-ideal factor
included in this approad is the fact that atomic to shot noiseis nite (-26 1 ).
Hence, as experimentalists, given - 2 we should take the above equation as a
theoretical upper limit.

In the experimental demonstration of entanglemert generationin Chap. 10
we estimated the variance of the entangled state to be 64% of the CSSnoiselevel,
seeEq. (10.5). In this estimation, we neglectedthe knowledge about the initial
CSSwhich leads us to believe we created a state with variance (relative to the
CSSnoiselevel) 1=-2 rather than the more correct 1=(1 + - ?) of Eq. (9.38). If
we assumethat our estimate correspondsto and e®ective 1=-2 = 64% we obtain
.21, 1:6, i.e. we now model our operationally obtained entanglemert at the real
- 21/, 2:8 (seeFig. (10.3)) by avirtual but perfect experimernt working at - 2 ¥ 1:6.
This e®ectie - 2 is closeto the teleportation “delity of F = 1=2.

The teleportation protocol is a very suitable extensionto our experimert, in
addition to the magnetic "eld for adding A, | A; and B, | B we essetially
have two laser beamssimilar to the one we applied for entanglemert generation
in Chap. 10. Hence,in principle, the teleportation protocol with three cellsis
straightforward to implemert. However, as experimentalists we needto demon-
strate that the teleportation is successfulith some delity F. For this purpose
we would needto perform measuremets on sample?2 after the teleportation has
been completed. But with our rotating frame this is not straightforward, we
cannot measureand characterize a single spin componert (J\yz or J3,) aswe re-
marked in Sec.4.3. This fact motivated us to considera four cell protocol which
is described in the next section.

11.2 Entanglemen t Swapping

Let us considerthe setup shown in Fig. 11.2(a). At Alice's site we place cells 1
and 3, and at Bob's site we placecells2 and 4. We create coherert spin statesin

lin Eq. (3) of [62] we substituted 2-2! -2 to account for the rotating frame.
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Figure 11.2: (a) The four cell entanglement swapping protocol. Alice has two
spin samplesl1 and 3, and Bob has samples2 and 4. First we entangle sample 1
with 2 and sample 3 with 4 by two laser pulses. Next measurethe joint state of
samplel and 3 by a similar laserpulse. Last we needby classicalcommunication
to transfer numbers Az and B3 from Alice to Bob. If the measuremen is ideal,
Bob can now use this information to rotate samples2 and 4 into an entangled
state with Jy, + Jy4 = 0and I3, + 334 = 0. (b) Given the atomic to shot noise
ratio - 2 the solid line shows the best obtainable variance of the ertangled state by
the protocol (calculated numerically). We seethat - 2 > 1 is required to obsene
entanglemert betweensamples2 and 4. The dashedline is the naive guess3=-?
for the variance. At large valuesof - 2 the two lines agree.

all four samplesoriented such that Jy; = Jxqa = Jx and Jx2 = Jxz = j Jx. Then
any two adjacert sampleshave opposite orientation and we may perform QND
measuremets on any of these pairs. Now we wish to generate entanglement
betweensamples2 and 4 without direct interaction betweenthese. This is done
in the following manner where we assumeideal measuremets (- 2 A 1).

First “re two laser pulsesmarked with the arrow (1) in Fig. 11.2(a). These
perform measuremers

Jl\yl"' J\y2 = A; and Jl\zl"' J\22 = By,

(11.6)

\]’\y3 + J\y4 = A, and J,\z3 + J\z4 = Bj,:

After this step sample 1 is entangled with sample 2 and sample 3 with sample

4. The next step is to shine a similar laser pulse (shown with arrow (2) in
Fig. 11.2(a)) through samplesl and 3 to measure

J’\yl + \j\yg = \]’\)(,)1 + \j\)(,)3 = Az and j\zl + \j\zg = ‘j\gl + ‘j\?3 = Bs: (117)

In analogy with the previous section we let the primed operators refer to spin

states after the measuremen on samples1 and 3, and we remenber that the

individual samplese.g.J\ly and J\yg are destroyd by pile up of bad action noise

while the sum of the two is consened. Now let us considerour knowledge about



114 Chapter 11 - Quantum Inf ormation Pr otocols

samples2 and 4. We have

Jl\fz*‘ \j\)?4=\]’\y2+ Jya= (Ari H)+ (Azi Bya) = Ari Az Ag;

11.8
J%,+ 3% = 8o+ $5a= Bri J21)+ (B2i Jy3)=Bii Bai Ba: (19

This measuremenh doesnot involve samples2 and 4 which is the reasonfor the
“rst equalities to hold above. The secondequalities follow from the entangle-
ment (11.6) created by the “rst laser pulses. The third equalities are valid as
a consequenceof the secondstep laser pulse (11.7). The numbers A;.2.3 and
B1.2.3 are completely random, but if Alice sendsthe valuesA; and B3 to Bob
by classicalcommunication he is able to, asthe nal step of the protocol, add
i A1+ Ay+ Az and | By + B, + B3 to e.g. Jy4 and J4, respectively. We see
that we then arrive at Jy, + Jy4 = 0 and J;, + J74 = 0 and a denite ertangled
state has beencreated betweensamples2 and 4 even though thesesamplesnever
interact directly. This is known as erntanglemert swapping.

Note, if we compareFigs. 11.1(a) and 11.2(a) the protocols are very similar.
We may considerthe four cell protocol as a teleportation experiment where sam-
ple 3 is the unknown quantum state to be teleported to sample2. In Fig. 11.2(a)
this state just happensto be an entangled state together with sample 4. After
the completion of the protocol it is sample 2 which is entangled with sample 4,
an entangled state has beenteleported.

Now, the above considerationsare valid for perfect measuremets, let us dis-
cusswhat happensin the caseof a nite atomic to shot noise ratio - 2. The
protocol works e in the rotating frame, and to measuree.g. Jy1 + Jy» we recon-
sider Eq. (9.33). If we have no prior knowledge about the spin state of samples

1 and 2 and given the results A we could guess

Z !

A
J“_yjp;__fyz:g Aj & (t) sin(- tydt - (11.9)
X ' 0

This is just a rewriting of Eq. (9.33). The value of J,; + J|» is here the number
A plus some“uctuating quartity (the integral). If we calculate the variance of
the above we get (the number A has variance zero)

3 .

Var j\y]_"' J’\yz 1 1
JIx T alS T -2

(11.10)

Having three of thesekinds of measuremets in the protocol leadsus to a naive
guessfor the uncertainty in the nal state of Jy, + Jy4 or 53, + J54 to be 3=-2
in units of Jx. This is plotted in Fig. 11.2(b) as a dashedline. But we do not
haveto bethat naive, in the limit - 21 0 this estimate approadesin nit y which
is wrong. With - ¢ 1 we hardly touch the spins and we know that we should
obtain the coheren spin state limit of unity on the vertical axis of Fig. 11.2(b).
We extend the wave function modeling of Sec.9.3 to the four cell protocol. This
is very cumbersomeand we get help from numerical methods. The result is
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shawvn asthe solid line in the "gure, we seethat it reachesthe correct limits for
.21 0and-2! 1. The interesting part is that with - 2 > 1 we arein principle
able to detect entanglemen betweensamples2 and 4. The operational estimate
-2 1, 1:6 of the previous section is well above this limit.

11.3 Quantum Memory for Light

In this section we investigate the possibility to teleport the quantum state of a
light pulseonto atomic spins,and later on teleport this state back to light. Read-
ing the introduction in Secs.2.1 and 2.2 we de nitely seethat the polarization
state of a light pulse and the spin state of atoms are very similar, belowv we show
how the o®-resonah interaction can connectthe two in a teleportation scheme.
To this end we need a source of entanglemert between spin states or between
beamsof light. The contents of this section is closeto the ideas of Ref. [79
which discussessimilar protocols.

Now, let usassumethat we are givena light pulseof duration T in an unknown
guantum polarization state. We describe this pulse by é‘y“ (t) and é‘Z“ (t) and the
relevant quantum variable is the collective property

Rr A Rr A
0 S (t)dt . 0 SN (t)dt
Op¥ ' and BN= 0pZ-’: (11.11)

in —
=

This is similar to Eqg. (2.10). As a resourceof entanglemert we assumeto have
two ensenbles 1 and 2 of spinsfulTling Jy1+ Jy2 = 0and ;1 + J3, = 0, i.e. they
are perfectly entangled. Like Eq. (2.4) we rede ne the spins as

)e‘A]_ = p‘]’\)\/]—l and IﬂAl = pj\z—l;
P\ X Jf (11.12)
Rpp = 22 and P = | B2
JX ‘JX
h i
Now X:;P =i for both light and the two atomic samples. The entanglemert

condition (at time t = 0 reads) X a1 (0) + Xa2(0) = 0 and Pa; (0) i Pa2(0) = 0.
In the following we assumeno static magnetic "eld, i.e. we are not in the rotating
frame. We let the incoming light propagate along the z-axis and let it interact
with the spin sample 1. The equationsof motion (6.11) and (6.13) will with the
above de nitions transform into

XUt = XN+ . Pa(0) and Xar(T) = Xa1(0) + - B™;

11.13
Xa2(T) = Xa2(0) and Par(T) = Paz(0): ( )

Sample 2 is unchanged, there is no interaction going on. If we put - = 1 we see
that the outgoing )’(\f“t contains information about the light pulse, X", and the
initial atomic state of sample 1, Pa; (0). We measurethis light with outcome A
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such that A = X" + Pa1(0). The remaining information (Xa; (0) and P") is
stored in the atoms. If we shine a strong light pulse along the y-direction with
-2 A 1 we may perform a measuremeh of X, (T) with outcome B, i.e. B =
X a1 (0) + lf}[“. We may now considerthe state of sample2,

Xa2(T) = Xa2(0) = i Xar(0) = P" i B;

. 11.14
Paz(T) = Paz(0) = Par(0) = i X" + A ( )
Now, if we add the numbersB and | A to Xa, and Pay, respectively, we have
completed the teleportation P I Xa, and j X" | Phay.

Now, we could reversethe process,assumewe have two entangled beamsof
light and an unknown atomic quantum spin state. Calculations similar to the
above will shawvn that we alsoin this casemay teleport the spin state to the light
pulse. Hence,with both the possibility of writing a quantum state of light onto
atoms and reading out this state to another light pulse, we have a protocol for
a complete quantum memory. This result should be seenin connectionto our
discussionin Sec.8.5.

We demonstrate in Chap. 10 how to generate an entangled state between
atomic spins. Also, in our laboratory others have demonstrated entanglemert
betweentwo beamsof light, see[37]. Hence,in principle we have everything at
hand to implement a full quantum memory. However, the above protocols do
not work in the rotating frame. Experimentally we prefer the rotating frame for
seweral reasons,seeSec.4.3, and a useful protocol is still to be found.

An alternative to quantum memory is the quantum cloner. An unknown co-
herert polarization state of light canbe optimally clonedonto two oppositely ori-
ented spin states by a single passageof the light through the two atomic samples
followed by a measuremen [76]. This protocol requires no initial entanglemert
betweenthe two spin samples.
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CHAPTER 12

Summary and Outlo ok

In this thesis we study the interaction between polarization states of laser light
and ground spin states of atomic cesiumsamples. With strong laser pulsesand
macroscopicgas samplescontaining ¥ 1012 atoms our quantum mechanical de-
scription of the collective properties of light and matter becomesvery similar to
ordinary position X and momertum P of a single particle. This is also known
as cortinuous variable quantum systems. In this approximation the atoms and
light are very similar from a mathematical point of view, and with an o®-resonat
dispersive interaction we are able to couple thesetwo di®erernt physical systems
together.

In the limit of o®-resonah coupling we neglect all absorption e®ectsbut
calculate all dispersive e®ectsof the interaction betweenlaser light and the real
hyper ne split ground state of cesium. This leadsto an e®ective Hamiltonian
and to light/matter propagation equations. The calculations are then heavily
supported by experiments of both classicaland quantum nature. During this
processwe learnedthat our physical systemsof light and atomsreally are sensitive
to the quantum °uctuations of ead other. In particular we followed the quantum
°uctuations of a squeezeceam of light into atomic degreesof freedomand back
onto light. This study brings optimism for possible future implementations of
€.g.quantum memory.

The o®-resonath atom/light interaction also allows us to create entangled
states between two separate macroscopicatomic gas samples. We exploit the
fact that we can perform quantum non-demolition measuremets on the joint
spin systemof two atomic samples. This will, on demand, drive the spin samples
into an entangled state. We perform a simple theoretical analysis of this and
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we demonstrate the generation of entangled states experimerntally. The obtained
entanglemert correspondsto a noise reduction of (36 8 7)% below the classical
limit, andthe entangled state livesfor at least0.5ms. Experimental entanglemert
generationis the most important result of this thesis.

It is feasibleto extend our experimental proceduresto teleportation protocols
with three or more atomic samples. Our operationally obtained entanglemert
could optimistically lead to teleportation of an unknown quantum state with -
delity closeto the limit F = 1=2 which cannot be broken by classical means.
A four sample entanglemert swapping experiment seemsfeasible, and our op-
erationally obtained entanglemert should be suzcient to obsene entanglemert
created by a swapping protocol. The present work in the laboratory is directed
along theselines.

In addition to the important results relevant for future quantum information
and communication protocolswe learned many aspects of atomic physicsfor the
practical characterization and utilization of atom/ligh t interactions for di®eren
purposes. With our e®ortson upgrading the experimental setup we also expect
to be able to study the dynamical ewolution of entangled states.
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APPENDIX A

Polarization States of the Light
Field

In this appendix we de ne our notation for Stokes operators, i.e. the operators
suitable to describe the polarization state of the light "eld. We will alsodiscuss
vacuum noise and lossesfor Stokesoperators.

A.1 The Quantized Radiation Field

The quantization of the radiation "eld is well described in many text books and
we will here quote results from [77]. The electric "eld operator can be expressed

X "
2" OV

E=i aedh i et (A.1)
Here , runs over all modes,i.e. over all directions in k-spaceand all polarizations.
The vector k  describes the direction of propagation, the angular frequency is
givenby ! = ¢k_j, and the complex unit vector e describesthe direction of
polarization. The vector e is perpendicular to k_ for all |, or in other words,
it is the transversepart of the "eld which is described above. The creation and

annihilation operators& and &’ fulT the commutation relation
1 [

a8 =1t o (A2)

We will make a few simpli cations to (A.1). We assumethat the "eld is propa-
gating in the positive z-direction and that the transverseextent of the beamis
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much larger than an optical wavelength. In this casea one-dimensionaltheory is
sutxcient. The transversecrosssection will be denoted A and the quartization
volume is then V = A ¢L, where we quartize the beam over a spatial distance L
along the z-axis. We will also make an overall phasechange' to get rid of the i
in front of E . Now the electric eld may be written

r 3 4
X hl ik z YAPaibk 2.
E = m é) e (S} + a’ e) e > . (A3)
The Hamiltonian describing the radiation “eld is given by
X H 11]
He= hl &4 + 5 (A.4)

A.2 Stokes Operators

To introduce the notation of Stokes operators it will sutce to consideronly a
single longitudinal mode of (A.3) with wave vector k. We explicitly specify the

directions of polarization along x;y or +;j by
r

T ik z y |kz¢
Ex = 2.. AL [axex + ayey]e + [a e, + aye ]E'
r Ts . (A.5)
= m [a-\\- €4 + ai ei 1]eikz + [&}: e:l + a?, e? 1]ei i 2

In the rst line e, and ey, are unit vectors along the x- and y-directions with
corresponding creation and annihilation operators &y, &y, &}, and &J. In the
secondline the unit vectorseg; are de ned by
ie e ie

e, = —p—y and e ;= —Xéé—y: (A.6)
This particular de nition ensuresthat 4, is the annihilation operator of a ¥% -
polarized photon and soon. This choice of linear and circular unit vectors xes
the relation betweenlinear and circular creation and annihilation operators,

. H + H
a = % ilay and a = él—xpil—ély: (A7)
Now, the Stokesoperators are de ned by
. .

1i ¢ 1
S = 5 daci ga, =i ala +aa (A.8)

li y Y ¢ . 13 y . y .
S, = 5 &, + aja, Sig da i aa (A.9)

1i ¢ 1
S;= o &80 gac = e aa (A.10)

1This is just a convention. This particular way of dening the “elds is common in the
guantum optics literature.
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wherewe have the operatorsin both the x; y andthe +;; basis. &, is the number
of photons polarized along ex minus the number of photons polarbzed along ey,
éy is the number of photons polarized along e.s5s = _(ex + /)= 2 minus the
number of photons polarized along e; 45 = (&x i €y)= 2, and nally, $, counts
the photon di®erencebetween¥s and ¥ polarization. In the circular basiswe
may nd it usefulto express

S, =5 +i§ =ias;

_ (A.12)
§ =S5 iS =8 a:
We may also de ne the total photon number A by
A= ala +aya =ala, +a4: (A.12)

The Stokesoperators de ned as above satisfy the usual angular momertum com-
mutation relations

h i h i
é';ék = izjk|§| and §2;8§ = §é§ (A.13)

which can be derived from the commutation relations for for the "eld opera-
tors (A.2). All Stokesoperators commute with A.

A.3 Strong, Linearly Polarized Light

In our experiments we often use a linearly polarized beam of light with strong
intensity. If the light is polarized along the e.g. x-axis we may treat operators
8, and &) as numbers, we make an overall phasechoice such that &, ! Ay and
& ! Ay with Ay real. Then we write

A2

8 VaSy = 7X;
i ¢

éy ]/4 A\ZX |ay + az ’ (A14)
Ay i ¢
s, 1/42—iX ai &) :

We seethat the quantum properties of the Stokes operators of light in this ap-
proximation solely are governed by the light in the y-polarized mode.

A.4  Stokes Operators and Losses

We nalize this appendix by calculating how the Stokesoperators transform when
the light is subject to lossesof magnitude 1 “, i.e. the fraction ~ of the photons
survive. We cortinue to assumethe approximation of a strong, x-polarized beam.
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A
é><:y iz é>(<);y z
a P “a+ P 1j B
B (vacuum)

Figure A.1: Lossesare modeled by a beam splitter with re°ection . This at-
tenuates the input “eld & and admixesthe vacuum componert b to the output
“eld.

As shawvn in "gure A.1, we model the lossesby a beamsplitter with transmission
“ which mixes a vacuum “eld B, & with the incoming Teld &, &Y. We denote
the incoming Stokes operators éx;y -z, and the outgoing operators égy 2. We
shall also assumethat all Stokesoperators are normalized to photons per second
(along the lines of App. C). A calculation shows that

SP="5S; r
8ty =" §,(t) + r (i )S (1‘2')SX &0, (1); (A15)
S0 ="&0+ L% 600,

We have introduced the vacuum operators ¥, (t) = H(t) + B/(t) and ¥, (t) =
i i(Bt) i B () which fulT

D E D E
Qo) = Qo) =t t9;
D E D E

(A.16)
QYY) =i LOKW) =ikt 1

We seefrom (A.15) that all the Stokes operators are attenuated by a factor ~

and that the quantum variables§y and S, in addition are mixed with an extra

noise sourcewhich must be there to presene commutation relations.
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APPENDIX B

Spins and Density Op erators

Throughout this thesis we will 'nd it useful to expressspin operators in terms
of density operators. We will be speci cally motivated for describing the spin
state of a collection of atoms in a hyper ne multiplet of the ground state of
cesium. In this appendix we considera spin operator j within a multiplet such
that j2 = F(F + 1) with h = 1. For cesiumwe have for the ground state F = 3
or F = 4. The connection between spin and density operators is very useful
for the derivation of the Hamiltonian (5.18) since we found density operators
conveniert in the derivation processand spin operators more intuitiv e in the
“nal Hamiltonian. Also, as we discussin Sec.4.3, atoms are oriented along a
magnetic "eld leading to Larmor precession. Expressing density operators in
the energy eigen basis (along the x-axis) will reveal the importance of di®erer
frequency componerts.

B.1 Quantization Along the z-axis

Describing the (2F + 1)-dimensional sub spaceof a hyper ne multiplet requires
“rst of all a choice of quantization axis. In the following we will take this asthe
z-axis. In the eigenbasisof [, we know from any elemenary book on quantum
medanics that

[Yjmi = mjmi and f\§jmi=pF(F+1)i m(m § 1) jmi ;
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wherefs = X § ify. In the languageof density operators % = jji hkj we then
get

1X p

b= 3 F(F+1)§ m(m+ 1)(Fms1im + Youm+1); (B.1)
1X p

f\y = Z F(F + 1)1 m(m + 1)(%n+l m i zXﬁn;m +1); (B-Z)
X m

k=" m%m; (B.3)
X' p

M= F(F+ 1) m(m+ 1)%ns1m; (B.4)

N = P F(F+1)i m(m+ 1)%mm 1 (B.5)

By combining the above we can cortinue to 'nd higher order momerts of the
spin in terms of density operators, e.g.

X

r= MY ; (B.6)
X' p

[ = (Fi m(F+m)(F+21+m)F+21i M%%s1m; 1, (B.7)
X'

=" P E T mE ) E I m)(FF LT % ime: (B8)

B.2 Quantization Along the x-axis

We will also considerspin operators expressedas a function of density operators
when quartized along the x-axis. The main motivation for this is the fact that we
experimentally orient the atomic spins along the x-direction sud that Wi % F

(or the opposite direction with j F). If F = 4 for instance we may in this case
assumethat the only important density matrix operators are (when quantized

along the direction of orientation) %a4, %4, a3, and %33 sinceall the rest will be
much smaller. Furthermore, in this basisand in the presenceof a magnetic "eld,

the diagonal elemeris will be constart, the rst o®-diagonalelemeris will rotate

with Larmor frequency-, the secondo®-diagonalelemers at 2-, an soon.

The easiestway to expressspin operators in the rotated basisalong x is to
make a cyclic permutation of x; y; z-indices of the spin operators and then refer
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to known results of Sec.B.1. In this way we obtain for the spin componerts

X
f\X = m%‘n;m ; (B.g)
m
1X p
= 2 F(F+1)i mm+ D%ne1m + Ym +1); (B.10)
m
1X p
fe = 20 F(F+1)i m(m+ DPmeam i Pnm +1); (B.11)

m

and we also list somehigher order componerts like

1X p
B+ 1y = 5 (Fi m}(F+m)(F+21+m)(F+1j m)
£ (z)(f‘n+1 mi1i “)’m; l;m+1) Y 0 (B.12)

X
Bfy + k= % P F(F+1)j m(m+ 1)@2m+ 1)(¥m+1.m + Ym +1)

m

Va¥x (2F i DI; (B.13)

1X p
N P 5 F(F+1)i m(m+ 1)@2m+ 1)(Fme1m i Yom +1)

Va¥h (2F | 1Iy; (B.14)

where ¥~ is the sign of jx. The last terms above are approximations valid for
jhixij ¥ F. The approximations of Egs. (B.13) and (B.14) can be derived by
comparisonto Egs. (B.10) and (B.11) and maintaining only the most important
terms.

Under the sameapproximation we have % ¥ F 2 and [ ¥4{% ¥ F=2 which is
seenfrom the relation j? = F (F + 1). Hencewe can also state that

M 1‘”

i ¢ ¢
i1 vliife vF Fié: (B.15)

B.3 Comm utators

When deriving equations of motion for spins we needto calculate commutators
betweendi®erent spin operators. In this sectionwe state the results for the most
important onesusedin this thesis. Starting out from the well known

NG y] = i1y (B.16)
and with the cyclic permutations thereof, we derive
£ o
E[\x§f\12 0: I+ )0 TV + eY)s (B.17a)
é\x;ﬁ n: i (T2 + 1200 iAvT + 1y)s (B.17b)

Bl =i iy + 12D (B.17c)
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£ o]
E[\ny\iz i I+ B0 (Y + T2Y);
g\y;[\in: PO+ DO+ (f\yf\z + f\zf\y)§

{\y;r% =+l + 10X

(B.18a)
(B.18b)
(B.18c)

(B.19a)
(B.19b)
(B.19¢)
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APPENDIX C

Contin uous Description of Light
and Matter

We will in this sectionbrie®y summarizesomeimportant aspects of light/matter

interactions. This includes a continuum description of the quarntized radiation
“eld and spatially cortin uous description of matter. The resultsin this appendix
are well known to many people (especially theorists) and we may ask, why then
usespaceto derive the results again? The reasonis that (for an experimentalist)
it is dizcult to quickly dig up all the results from the literature. Furthermore,
someof theseresults are so simple that nobody caredto write about it in a text
book! The resultsin this appendix should help giving an overview to someof the
theory neededin this thesis. The derivations are heavily inspired by [77, 78, 79].

C.1 Contin uous Description of the Electromag-
netic Field

We start out from the quantized electric "eld (A.3) in one dimension. For peda-
gogic reasonswe only care about one polarization mode, e.g. the x-polarization
of the electric "eld. Then we may write

r—
X DY

. ik L
F AL agk. 7+ avel k.7 (C.1)

E =
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In this equation the electric "eld is quantized along a line of length L. Imposing
periodic boundary conditions implies a discrete resolution in k-spacewith reso-
lution ¢ k = 2¥=L. The resolution is going toward zerofor L ! 1 and this is
the transition we want to make in the following. We needto make the change
X Z
¢k! dk:

To do so, we de ne the operator

a(k) = p% with K Yk : (C.2)
In this way Eg. (C.1) becomes
X p_ TR ¢
— e - I ik z y ik z
E ¢k 52,1 A ak )e*-*+ &'k )e
; r—
_ X K h!—>ia(k yek. 7+ av(k )e K 2¢ (C.3)
4Y%q : :
Z -
hl i - e G
! R kz 4 av(k)e kz - I = ko)
! dk 3RoA a(k)e*” + &'(k)e ; (! = ko):

The operators &(k) and &Y(k) are now cortinuousasa function of k and they have
units of square root meters. We will now derive the appropriate commutation
relation. Considerthe sum
. " # Z
X h X a &, £ o
1= a8, = ¢k p=—; - ! dk® a(k); &Y (k% :
0 ) : 0 ¢ k ¢ k

Theserelations hold true wheneer the sum of | ®includes, , or equivalertly, for
all rangesof integration over k°including k. We conclude

£ o
ak); & k9 = ki k9: (C.4)
In the contin uous description the free "eld Hamiltonian (A.4) will turn into
z H 1‘H
Hr = dkhck &/(k)a(k)+ 5 (C.5)

We seethat &Y(k)a(k)dk should be interpreted as number of photons which have
wave vector in the range [k; k + dk].

C.2 Spatial Description of the Electric eld

Up until now the electromagnetic eld has been described in reciprocal space,
i.e. in k-space. This is the natural way to deal with Maxwell's equations. It is
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possiblethough tozgiveadescription in z-spaceby de ning %he Fourier transforms

1“1 , 1“1 .
a(z;t) = p— ak;t)ek?dk and &Y(z:t) = p=— ay(k;t)e ®zdk:
(z;1) \9?/4 . (k;t) (z;1) \9?/4 . (k; t)

(C.6)
Note, we now explicitly chooseto work in the Heiserberg picture and we re-
mind ourseles of the time-dependenceby making the operators a function of t.
Also, the last line of (C.3) assumespositive k-values. Making the Fourier trans-
form above from j1 to 1 isthus strictly not correct sinceit incorporates wave
vectors traveling in the negative z-direction. Howewer, if we make the rotating
wave approximation in someband around a carrier frequencythe error is negligi-
ble. Our particular way of de ning the Fourier transform leadsto the following
commutation relation for the spatial operators

a(z;t);ay(zo;t)n: Hzi 29: (C.7)

The dimensionof &(z;t) and &Y(z;t) is 1:p length and the physical interpretation
isthat &Y(z;t)a(z;t)dz is the number of photonsin the spacebetweenz and z+ dz.

The time-dependenceof &4(z;t) follows Heiserberg's equation of motion. We
decomposethe full Hamiltonian into three parts Bt = Hr + FHaoms + Hint Where
Hr describesthe pure radiation “eld, H.oms describesthe matter independert
of light "elds, and B¢ is the interaction Hamiltonian. Since the light "eld
commutes with H agms We get

@ 17 @ 1 %2 1h

i
=a(zt) = p=— —ak:t)é?dk= p=— = ak;t);Br+ B €2dk:
@( ) PF/A @( ) PF/A T (k;t); Hr int

Calculating the comrmtzator with the pure radiation part Hg leadsto
h i £ o
ak;t);Ar =  dk®hek® ack;t);a(k%t) ak®%t) = hek ack;t);

where (C.4) has beenusedin the last step. Since

Z
17 - @(z;1)
p— ika(k;t)ek?dk = ;
2, Al @
the above equationsreduceto g
H h i
@ @ 1
a ‘g @EN=g a(z;t); Rine (C.8)
We have now derived a corveniert way to describe how the light "eld is a®ected
by atoms through the interaction Hin¢. Now, if we restrict the radiation "eld to
a narrow band we get a strong motivation for the Fourier transformation of the
electric "eld into z-space. In this casein Eq. (C.3) we have! ¥4! o where! g is
the carrier frequency of e.g. a laserbeam. Then
z r B
E= dk -—°
A/20A
!

hlo i ¢
1) + AY(7- .
220A a(z;t) + &(z;t) :

'ak: ek + aY(k:t)el k2

(C.9)
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We seethat a(z;t) can directly be interpreted as the amplitude of the electric
“eld at position z at time t. A "nal remark in this sectionis that in free space
the time and spacedependenceis trivial, we may here excludethe z-dependence
altogether since&(z;t) = &(0;tj z=0. If we (relative to somepoint in spaceof
our choice) make the de nition

a@) = P ceazb); (C.10)

and the samefor &Y(t), we get operators that are normalized suc that &Y(t)Aa(t)
is the °ux of photons at time t which is corveniert for the description of a laser
beamincident on a detector for instance. For light in the vacuum state we have

£a(t); aY(tO)u = Htij tY: (C.11)

C.3 Contin uous Matter Op erators

When describing the interaction of light with matter it is corveniert to express
both the electric eld and the atoms as a function of the spacecoordinate z. To
illustrate this we assumethat we have a collection of two-level atoms coupled
to the light by a dipole transition. The generalization to more atomic levels is
obvious. We will denotethe ground and excited state of the atom by jgi and jei,
respectively.

Making the dipole approximation, the Hamiltonian describingthe interaction
is [77] X
Rine=1i  dj ¢E(R;); (C.12)

J
whered; = | er; is the dipole operator for the j 'th atom and R; is the location
of the j'th atom. If we still considerlight linearly polarized along x and make
the rotating wave approximation, the interaction Hamiltonian is
r

Ao X ° . ’
A= op AR+ e (C.13)
J

We sum over atoms, z; is the position of the j'th atom, and we have intro duced
the (dimensionless)density operator %y, = jgi hgj. The dipole momert is de ned
by d = elgjxjei. The above Hamiltonian is well known from text books (see

e.g.[8Q]), for the j'th atom the operator %Jg) may changethe atomic state from
joi to jei while the operator &(z;;t) annihilates a photon at position z;. The
strength of this processis governed by the dipole momert d”.

Instead of assigninga number j to every atom it is corveniert to use the
position z asthe index. If %zis the density of atoms we may de ne %(z;t) suc
that

1 X )
Yye(z;t) = ViAdy 7 (1); (C.14)

7y 2[z;z+ dz]
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whereA is the transverseextent of the atoms. Note that since’2Adzis the number
of atomsin the slice[z; z+ dz] the operator %(z;t) is the (dimensionless)density
operator for an atom picked out from this slice. With this de nition, Eg. (C.13)
can be written

r

Z L -

1 ¢

Bine = ;Z ld"z)‘(a‘,g(z;’[)a(z;t) + d%e(z;1)8%(z;t) Y2Adz (C.15)
0~ o

where the integral runs over the sample length L. We have now obtained a
cornveniert way to describe the interaction Hamiltonian for light coupled to a
collection of two-level atoms. For instance, propagation equations through the
sampleare easily found by combining (C.7), (C.8) and (C.15),
M 1

@ @ .

— + Cc—= A&(z;t) = i ig¥eM%e(z;1); C.16

a’ ‘a (z;t) = | i9%2P0ye(2; 1) (C.16)

where g = P I 0=220hAd. Together with the Heiserberg equation of motion
for %e(z;t) we have the coupled quantum Maxwell-Bloch equations describing
light/matter interactions. To nd the time ewlution of the density operator
%4e(z;t) we must calculate commutators of density operators. From Eq. (C.14)
we can in generalshow that

[P (z;1);Pa0o(z%1)] = %\(% o(Z;t)bioj Yoo (Z;t)ba ) Kz 29: (C.17)

A nal remark in this sectionis the extensionof the above into the spin language.
If we considerdensity operators amongground state levelsin a hyper ne multiplet
asin App. B we can expressfor instance the {%, operator as a function of z, i.e.

X
(z;t) = M%nm (2;1): (generalizedB.3)

m

This can be done with all spin operators. We still have dimensionlessoperators
with usual expectation values (i.e. Hy(z;t)i is in the range i F to F). The
commutation relation will be modi ed in the following way

Mz (2301 = iN(zi0) Oz 20, (C.18)

that is the commutation relations from Sec.B.3 all hold but with the addition of
the z-dependenceand the factor H(zj z9=%A
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APPENDIX D

Dip ole Matrix Elements

In this thesis we needto calculate the strength of di®erert optical transitions
betweenthe ground state 6S;-, and the excited state 6P3-, multiplets in cesium.
This is to a great extent a problem of tensor algebra and some of the following
equations can be found in e.g.[81].

D.1 Calculating Matrix Elements

The energy levels of a cesiumatom are well described by the total angular mo-
mentum F = J + | whereJ is the total electronic angular momertum and | is
the nuclear spin. Howewer, the dipole interaction of an optical transition only
interacts with the electronic degreesof freedomand we end up with the problem
of calculating matrix elemerts of the kind h®J 1 Fmgjrqj®@3% Fmi whererq is
a sphericaltensor componert acting on the J-part of the matrix elemen, | = 7=2
is the nuclear spin, J = 1=2 is the ground state electron angular momertum and
J0= 3=2is the excited state electronic angular momertum. This situation is well
known and the result is

hRJI1Fme jr; oj @IAFmi = (D.1)

Y Z

7
0
G 1F ™™ b me 1GFmei P 2E 1 50 '3 |1 @RI kr k@31 ;
where g = 0;81 is the tensor componert index, hF mg 1gjF m2i is a Clebsd-
Gordan coezcient, the curly brackets is a 6 -symbol, and h®%J°krk®@Ji is the
reduced matrix elemeri.
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We wish to calculate the latter in terms of the inverselife time of the 6P3-,
levels. The easiestis to considerthe upper F?= 5 m@ = 5 state which can
only decay by spontaneous emissionto the lower F = 4, mg = 4 state. We will
“rst calculate the probability of emitting a photon along the direction k with

polarization ell), where we parametrize k and el), j = 1;2 by
1 1 .
k sinjucosA sinA i COSUCOSA
k = @ksinpsinAA ;. e® = @; cosAA; e@ = @; cospsinAA:  (D.2)
k cosp 0 sinp

Note that these three vectors are mutually orthogonal and real. To go on we
needthe interaction Hamiltonian betweenthe radiation “eld and the atom. This
IS r
X
Rine = er ¢ h!
N
which is simply minus the scalar product of the quartized radiation "eld (A.1)
and the dipole operator d = j er of oneatom. The two polarizations are indexed
by j and , is running over all directions in space.

With the initial state jii = j®J%F%mijny; = Oi characterizing the up-
per state with J° = 3=2, FO = 5 m2 = 5, and no photons in the mode
propagating along k with polarization along el), and the "nal state jfi =
j®IIFmeijng = 1i whereJd = 1=2, F = 4, mg = 4, and one photon is preser
in the mode kj, the transition matrix elemern is given by (in the dipole approx-
imation)

3
2o el) aj kTl (D.3)

pD- ZE 4D - E
f Bt = e ﬂ @I Fme el ¢r @19 Fm?
r2 — (D.4)
=je 22.oi/ hRJ | 44jr; 1)@ 55 (ell) ¢ey):
In the last equality we usethe fact that only the r; 1 componert will cortribute
to the ¢ mg = +1-transition and that wecanwrite r = j 411, 1+ €loi € 1r+1 -
Now, the transition rate j is found by Fermi's goldenrule
yD =, CE
i = ZF/"_f Hin T T UE): (D.5)
The density “4E) of nal photonic statesis
V ¢E2¢d- V¢! 2 ¢d-
YE) = = : D.
¢E) (2¥hc)3 (2¥c)3h (D-6)
Thus we nd the rate into the solid angled- along k with polarization e(i)
M - - 1
2, hl e, 2. L 2 VI20-
i) = =5 ) h®J1 44jr, 1j @39 55
I( ) h 220\/ _e ¢e+l - J )i 1) J (21/C)3h (D 7)
132 = '

) 2
= W_e(]) ¢e+1_j|’(R)0J0krk®]I12d- ,
0
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where we in the last step usedEq. (D.1) with appropriate valuesfor F, mg, F©,
m2, J. and J° (the Clebsd-Gordan coexcient is unity while the 6j -symbol is
1/6). Now, the total dece rate is found by summingoverj = 1;2 and integrating
- over 4% By using the de nitions (D.2) and (A.6) we nd

e® tey; = pl—ée‘A and e? ¢e,; = Egﬂle"* (D.8)
and we deduce
TP IET
e® ¢e,y ” + €@ ey T = %Szu )
Z pZ - - -1 (D.9)
2 -2 1,
2@ e, + e tey~ - - ¥
4, 3
With this result at hand we have the total decay rate
o _ ez H 3 . 0 .2 .
= m@w@% krk ®Jij°; (D.10)
and isolating the reduced matrix elemen we get
_-6P3:2 krk651:2®2 = 3®C'2—3: (Dll)

Here ° = 2%¢5:21MHz is the FWHM line width of the 6P5;_, statesin cesium
measuredin radians per second,and ! is the angular frequency of the 852nm
D2-line. c is the speedof light and ® is the ne structure constart. All matrix
elemens can now be deducedin absolute units from (D.1) and (D.11).

D.2 Dip ole Coupling Constan ts

In Sec.5.2we speci cally needto calculate numberslike(gé;m Fomo)? and (gf . romo)¢
(Ot 1 . omo), Where gé;m;Fo;mo is de ned in the discussionaround Eqg. (5.5). The
calculation is straightforward from the above results and from the Clebsd-
Gordan coezcients and 6j -symbols of Tab. D.1. We get for the squaredcoupling
constarts

315m2~ 315m + 3780
75m2 § 675m + 1500
35m2~ 245m + 420

i 1472 147m + 2940
112m2 § 1232m + 3360

5

2
(%mroms 1)’ = 4A 21/43360

8
% 240m? " 1200m + 1440

O o o o o o
LI L | R A T 1

’am.bw.bool\s

MTTTTMTT
(T T VI TR T
AR APOO®
TTTTMTT

12)
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For the crossterms we get for F = 3

. c° ,?p
(g;;mi l;FO;m) ¢(g||:m +1; Fo;m) = szzl 8(3 + m)(4 + m)(3 l m)(4 | m)
1 < 240 F =3;F%=2 (D.13)
£ —_ {315 F=3F%= 3;
33600 75 F=-3F0=4
and for F = 4 we have
N : _ ¢ ,?%P . .
(gF;mi 1;F°;m) ¢(gF;m +1; F°;m) TN 8(4+ m)G+ m)@i m)Gi m)
< 35 F=4F%=3 (D.14)
£~ {147 F=4F%=4:
3360 412 F=4F0=5
It is worth mertioning a few sum rules. We easily nd
o 2qg-
5 ,_C°.°8" m o
FO(gF;m;Fo;mm) = Ao A forF = 3 (D.15)
o 2
5 5 _ C°,%88m o
FO(gF;m;Fo;m§1) = A 4 for F = 4; (D.16)
(% m; 1rom) Ok ms1 pom) =0 for F=3andF = 4 (D.17)

FoO
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hF;m; 1, jF%m + 1i
F=2 F=3 F'=4 F=5
F=3 p(2i,rp)(31 m) p(3i,§n)(4+ m) p(4+,r‘n)(5+ m) 0
= P22 P2 =
F=4 0 P e mam @i m)E+rm) | - B m)Er m)
- 7 "0 " 90
hF; m; 1; OjF % mi
F=2 F=3 F=4 F=5
_ (3i m)3+ m) m (4j m)@4+ m)
F=3 21 P 2% 0
F=4 0 . P (4i m)(4+ m) m P (5i m)(5+ m)
= P36 % 5
hEom; 1 4F%m 1
F=2 F=3 F=4 F=5
_ @ m)@E+ m) @i m@E+ m) @ mGi m)
F=3 P P Pe5 0
P — P— ,
Fe4 0 @+ @ m) 51 @+ m) G mEim)
72 " 40 " 90
F FO 1
3=2 1=2 7=2
F=2 F=3 F=4 F=5
F=3 i . 1=28 . 3=112 i . 5=336 0
F=4 0 1=12 i o =) 1=

Table D.1: Relevant Clebst-Gordan coexcients and 6j -symbols for the 6S;-, !

6P5-, transition in cesium.
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APPENDIX E

Photo Detection Theory

In this appendix we brie°y summarizethe most important aspects of photo de-
tection theory and we tailor the theory to be directly applicable to our needs
in this thesis. Photo detection is well covered in the literature, seee.g.[82, 83].
Our experiments are made with balanced detection setup as showvn in Fig. E.1.
This is practically a homodyne measuremeh which has been described in [84]
and results of the sectionsbelow follow directly from the approach usedin this
reference.

E.1 Stokes Vector Detection

Let us assumethat the detectors depicted in Fig. E.1 are in nitely fast and that
they deliver a current pulse ex(t j tg) if a photon is incident on the detector
at time tp, where e is the unit electrical charge releasedby the photon. If the

detector quantum ezciency is denoted "4 we have
D E D E

hiy(t)i = eq &ls-(Haws:(t) and Hz(t)li:): e,thE & 45: (1)8; 45: (1)

) h()ig, = Ha(t) i i2()i = 2670 Sy(1)
(E.1)
The S, index reminds us of the detector setup asshown in Fig. E.1. The spectrum

©(!) of the photo current i(t) is de ned by

o) = ' hi(t)i(t+ ¢)i € ¢dg; (E.2)
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Bigs = = (Bx + ay)=p 2 i(t) i)

ax, 8y 112
] .

p_
8 45: = (& i 8y)= 2

Figure E.1: Detector system for measuring the éy-componert of light. The
incident light described by the "eld operators &, and &y is rotated by a ,=2-plate
and split on a polarizing beam splitter. The two photo diodeswill measurethe
§ 45f-componerts of the incident "eld and the di®erertial photo current i(t) =
i1(t) i iz(t) is sensitive to S, (t).

and to calculate this spectrum we needthe correlation function
D E D E
NI+ o)ig, = g At) o)+ 467 ] 1505 (t+¢): 5 (E3)

where the colons denote normal and time ordering of "eld operators, i.e. the
Stokesoperators Qy(t) and §y(t+ ¢) should be written in terms of “eld operators
85 45¢, a’é 45+ OF By, ag;y and all daggersshould be moved to the left, and time

must increasetoward the certer. Here Af\t) is the total photon °ux hitting the
two detectors. The rst term of (E.3) describesthe possibility to count the same
electron twice when asking about the current. It only contributes at ¢ = O for
an in nitely fast detector and is known as shot noise of the light. The second
term is responsible for correlations between photo electrons arising from other
reasons,i.e. éy at di®erert times may be correlated if the light beamin the past
passedthrough some medium that a®ectedthe light. The correlation function
readsin the x; y-basisfor ¢ > 0

H(it+ o)is, = &g AY(DA() + 8 (08, (1) (2)
&5 AMAlt+ Oay(t+ )ay(t
+ OB+ A+ D (E4)
Ot da(t+ a)ély(t)®a
FoAMA(t+ D8y (t+ Oa(L)

and for ¢ < 0 we just interchanget and t + ¢ above. This expressionis unap-
proximated but quite annoying to usesincewe from the light/matter interaction
equations get expressionsfor e.g. éy and not for the normal and time ordered
“eld operators directly. But if we make the approximation of a strong linearly
polarized beam of light along the x-axis (seeApp. A.3) we have

Aty = AZ, &) = Ai &) +i&() ; &= Ai 80 &) ;
(E.5)
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and inserting this into (E.4) we getfor ¢ > 0
h(ti(t+ ¢)ig Y42e” de+(¢)
oD iE 1

Dh i
2@ S,(HSy(t+ c,) + éy(t+ (,)éy(t) S a&o
| i ’

2
(E.6)

and for ¢ < 0 we interchanget and t + ¢ which obviously only has an e®ecton
the last term. We could as well have chosento measurethe S, componert of
light which would be implemerted by replacing the ,=2-plate in Fig. E.1 with
a (suitably adjusted) ,=4-plate. Going through all the above results once again
would then yield (for ¢ > 0)
D

E
h(t)ig, = 2¢7q S(t) ; (E.7)
hi(t)i(t+ O)I% Y, 2e?" dSX+(([% Bh i 1
é é é é ;éz d
‘a2 @ OS(t+ ¢) +2 (t+¢) (t) i Sy(t) 2i(t+<,)

Equations (E.6) and (E.7) may be a litle cumbersomebut they have the ad-
vantage that they are expresseddirectly in terms of Stokes operators éy and

S,

E.2 Our Exp erimental Case and Detection

We will go on with the above equations and showv that in our experimental
conditions theypcan ke sirppli ez First of all, if the light is in the coher-

ent state with §,(t) = S,(t) = 0, the y-polarized componert of light is
in the vacygm state. In this case(C.11) holds and we cgn easily shov tgat

aay(t) = Hti t% while hay (a1 = ayO&() = & (1)ay(t9)
0. Under the approximgfjon of stroag lipearly polagzed light along the x-

%ﬁs we calculiatEe further S,()S,(t% = S, ()5 (19 = Sc=2¢xt; t9 and

§(1);S,(t% = iSk ¢t t9. In this casewe have for perfect detector
exciency "¢ =1

H(i(t+ ¢)ig = HOI(t+ ¢)ig, = 26°ScH(¢); (E.8)

and we stressthat this is only valid for a light in the coheren state incident on
a detector with 100%e=xciency. We may assumethat the light emitted from our
lasersare in the coherern state so the above considerations are valid for light
before an atomic sample, not after. The delta function +(¢) ensuresthat the
spectrum (E.2) is white, i.e. independert on frequency! .
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Now, we may also produce squeezedight experimentally, and the character-
ization and detection of this is a long story [83, 85, 60]. We make a simpli ed
description assumingthat the bandwidth of squeezingis in nite, i.e. the spec-
trum (E.2) measuredwith squeezedight incident on a detector is independert
on frequency This is a valid approximation under the circumstances of this
thesis sincethe bandwidth of squeezingis much larger than the dynamical band-
width of atoms interacting with the light. A result of this assumption is that
h(t)i(t+ (;)iSy .5, Must be proportional to +(¢) and this is then also required for
the right hand sige of Egs. (E;g) and (E.7). For the commutator we then only
have the choice  §(t); S, (19 = iSkx(tj t9.

Now, we know that we experimertally would measurehi(t)i(t + (;)iSy =2,¢
2e?S,+(¢) and hi(t)i(t + ¢)ig, = 2, ¢26?Sc#(¢) where?, and 2, characterize the
noiseof a éy or S, measuremen relative to the caseof coherert state light (E.8).
Putting all the above Itj%gether we concludethat

iE
§ ;8 () =isyHti t9; (E.9)
D  E <
SO (M) =2y e (i 1); (E.10)
D E
SMSF() =2 ¢%i'(ti t9); (E.11)

which is valid for all input “elds beforeatomic samplesencourtered in this thesis,
squeezedor not. The squeezingparametersmust ful T 2, ¢2, . 1. If 2, < 1 and
2, > 1 we have squeezingin éy and anti-squeezingin $,, and vice versa.

The physical interpretation of the delta correlations of the above equations
is that polarization properties of photons measuredat time t and of photons
measuredan in nitely small time step later are completely independert of eat
other. This is obvious for the &, mode in the vacuum state (2, = 2, = 1). For
the squeezedstates photons must be correlated to ead other, but the above just
states that correlated photons arrive in pairs at exactly the sametime (i.e. for
squeezingin éy with 2, < 1 two photons may be correlated such that they will
click in two di®erert detectorsof Fig. E.1 giving no cortribution in the di®erertial
photo current i(t)).

The situation is completely di®erert if the light has passedan atomic sam-
ple with slow time dynamics, then éy(t) and S, (t + ¢) may possesinformation
about non-commuting obsenables of the atomic sample and (E.9) would not
hold. However, for a very speci ¢ case(which is encourtered in our experimerts)

of §,, §, transforming like ,

Sty = S )+ dtL (SN (t9;::);
S (1) = 87 (1)
whereL can be a function of manyyyariables including atorgj¢ variables ang in
but excluding §" we easily nd S (t); S (1) = Sh(); Sty =

(E.12)
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ISyt t9 and we end up with

2™ o o E D E

2 ou t ou t+ . + ou t+ . ou t '
3D§y (t)Sy™ ( o)E Déy (t+ ¢SS ()E’

26 SMMSM(t+ o) + SM(t+ PSM(D)

i+ i,

K@it + &g,

(E.13)

which is valid for 100%e®ecti\e detectors and for the very special caseof (E.12).
To include lessthan unity exciency detection is straightforward if needed. We
also note that including "4 < 1 in the description above or including it as a loss
along the lines of App. A.4 makes no di®erence. We seethat all the trouble
causedby the normal and time ordering in photo detection theory in somecases
can be boiled down to a simple expressioninvolving only Stokes operators.

We conclude this appendix with a useful result for the spectrum (E.2) of a
measuremen of S (or similarly é;’”t). This is closeto what is known in the
literature as the Wiener-Khinﬁcﬂn@ theorem [86]. If the Fourier transformed
Stokes operator éf,’”t(! )= 1= Y Q’”‘ (t)e' tdt has a correlation function on

the form D E
SIS Y = F ()i 1 (E.14)

then the spectrum (E.2) of the photo current i(t) can be found by Fourier trans-
forming (E.13) and we get

o) = 92;%4[1‘(! ERIEDE (E.15)

The front factor is irrelevant but the fact that there are two terms with opposite
signson ! is a result of the normal ordering of light operators. This result is
usedin Chap. 8.
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APPENDIX F

The Quadratic Zeeman E®ect

The quadratic Zeemane®ectis well understood [87], we will outline the important
results in this appendix. An alkaline atom in an external magnetic "eld B is
described by the Hamiltonian

B = hal ¢J i 1TJJ ¢B | ll—'| ¢B; (F.1)
where J describes the angular momertum of the outermost electron, | is the
nuclear spin, a describesthe strength of the magnetic dipole interaction between
the electronicand nuclear spin, and h is Planck's constart. The magneticmomernt
of the electron (for an s-electron with L = 0) is®; = | 1:0011596521869(41)s .
The value for the nuclear momert in cesiumis 1| = 2:582025(4} . Thus, the
last term in (F.1) always givesa minor correction comparedto the secondterm,
but the relative strength between the rst and secondterms depends on the
magnetic eld B.

The exact solution for the energy E to the above Hamiltonian is

r

hhis o hhis 4m
—_— —_— +
@+l 1M Mg

Erm = i X+ X2 (F.2)
where § is usedfor F = | § 1=2, m is the magnetic quantum number (quantized
along the direction of the magnetic eld), B = jBj, and the hyper ne splitting
%5 relatesto a by hOp = h7a(2l + 1). The parameter x describesthe relative
strength betweenthe Zeemane®ectand the hyper ne splitting:

(ity=3+1=1)B.

X =
h®his

(F.3)
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For weak "elds m describesthe projection of the total angular momertum F =
I + J (the total angular momertum is denotedJ in the rest of this thesis, with the
obvious possibility of confusion!). We seefrom (F.2) that for small "eld strengths
or very strong “elds, the energydependslinearly onB. In the intermediate region
the situation is quite non-linear. All our experimerts are performedin the weak
“eld regime with x ¥ 3 ¢10' 4. Here a linear approximation is very good, but it
is important to calculate also the secondorder cortribution.

We calculate the separation of adjacert sub-lewels starting out by expand-
ing (F.2) to rst order in the magnetic eld strength B (leaving out the constart
shift independent of B). With the standard corvertion

ES) = gelpBm; (F.4)
we get for cesiumwith nuclear spin| = 7=2
_at s
o = T T 2+ 1
_ 0:250390 forF = 4 (F-5)
© |} 0:251194 forF = 3°

Thesetwo numbers di®erin magnitude by approximately 0.3%. Thus we have a
slightly higher separation between levels for the caseof F = 3 than for F = 4.
To calculate the quadratic Zeemanshift, it will suzce to do the approximation

1, = 0. In this casewe may write the rst order expansionof (F.2) ash®  ~
Em+1 i Em ¥ 5272 ¢B, and we then easily derive to secondorder
u 1
E i E o
—mE L EM oo 15 S @m+1) (F.6)
h hfs

This equation describesthe transition frequencybetweenthe m'th and the (m +
1)'th level. As is described in Sec.7.1 we perform spectroscofy on transitions
with ¢ m = 81, seeFig. 7.2(b). The separation °gz causedby the quadratic
Zeemane®ectbetweentwo lines will thus be
202
OQZ = O—L: (F?)
hfs
Most of our experiments have °| in the vicinity of 325kHz corresponding to a
magnetic eld of a little lessthan 1 Gauss. With the cesiumhyper ne splitting
being °ns = 9:1926GHzwe get a quadratic Zeemansplitting of 23Hz.
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APPENDIX G

Spin Decay and Langevin Forces

In this appendix we derive the correlation function for the Langevin noiseterms
F—“y and F, usedin Chap. 8. These Langevin forcesare necessaryin presenceof
the decay terms of Egs. (8.3) and (8.4). We may take these two equations and
leave out the terms from the cohereri ewolution of Heiserberg equations,i.e.

gi}’”t(t) =i iy + Fy); (G.1)
gﬁ;“ (t) = i i (1) + Fo(1): (G.2)

We assumgghe resenojt to have no memory, i.e. the correlation functions can
bewritten Fi(t)Fj(t9 = kj £t t9. Integrating suitable combinations of the
above equationsover a small time step ¢ t will lead to the di®erert k; 's. Starting
with ky, we getto rst order

DE D E Dh iE
i Ji =i S+ et) = S+ cr); S+ ¢
Dh iE Ztsc tZt+¢ tDh iE
= (Li 2i¢¢t) Sy L) + Py (t9: F(t%)  dtdt®
D E t t

i1 25 ¢¢t) Jx + (kyzi kgy)Ct
D E

) (Kyz i Kzy) = 2ij \j\x ;
(G.3)
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where we have assumedthe macroscopic mean value of Jy to be independert
on time for a well oriented sample. Note, that the quantity (ky, i k;y) changes
signif the macroscopicspin reversesdirection. We could also have calculated the
anti-commutator above,
¢h i A ¢h i A

Jyt+er); L+ ¢t . = @i 2ice Jy); 52(t) .kt ket

(G.4)

But sinceJ, J; + 3,3} = (2 | J2)=2i and the expectation value of J2 or J2 is
zerofor a completely polarized samplewe have ky, + k;y = 0 to a high precision.
We proceedwith k.,

D E D E ZiuetZiwetD E
F2e+et) = (@ 2i ¢et) J2(t) + Fy(tYF,(t%  dt%t®

= (@ 25 ¢¢t) 2 + kg0t

D E
) I(yy = Kz = 2j J\ZZ =i Jdx;
(G.5)

where we again assumetime independenceof the variance of J; (it is given by
its steady state value which in our casemeansthe coheren spin state sincej is
governed by optical pumping to this state. The last equality re°ects that. We
also stated the sameresult for kyy, which is derived in a similar fashion. We
concludethis appendix by repeating the results,

D E D E
FyOFy (Y = Fo(t)F, 9 - Gjdyj e(t i t9;

D E D (G.6)
FyOF(tY =i F(0F@Y) =ij ¢y et t9;

where J, is the mean value of the macroscopicspin Jy counted positive along
the x-axis.
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Erratum

In the following we list errorsin the thesis Entanglementand Quantum In-
teractions with Macrosopic Gas Samplesby Brian Julsgaard, University of
Aarhus, October 2003. This erratum hasbeenupdated August 28th, 2005.

1 Interaction Hamiltonian

There is a mistake of a factor of two in the derived e®ective Hamiltonian
Eq. (5.18). This error arisesfrom a mistake in the adiabatic elimination
procedureof Sec.5.2. | am grateful to Klemens Hammererfor nding the
error. Below we will explain it in detail.

1.1 A Spin-1/2 Toy Mo del

It is unnecessarygoingthrough the calculationsof Sec.5.2 with the full level
structure and propagating optical elds. We shall considera single spin-1/2
atom asdepictedin Fig. 1 interacting with only two light modes,&4, and 4, .
The interaction Hamiltonian for this systemis (in the frame rotating with
the laser eld)

Fine = RC( a3+ Yaq) + RQ(&) %aa + Yar8 + & Yoz + ¥aoer ), (1)

whereg is areal parameterdescribingthe interaction strength and the atomic
operators % and light operatorsas have already beenwritten in the slowly

i 2i

Figure 1: The level structure of a simple spin-1/2 model with optical frequen-
ciesand detunings included. The propagation direction of the light mode
coincideswith the quartization axis of the atomic statesand we decomppse
the light into the two polarization modesé. and 4, .



varying form (see Eq. (5.9)). From this Hamiltonian we may derive the
equationsof motion. For the ground state operatorswe nd

h |
1 .
% ~ih % i = i ig(&%ai Yaa);
@ ig(at 401 %o, ) )
@42

@ = jig(a %si %o ):
To proceedwe needappraoximate resultsfor the atomic operatorson the right
hand side of theseequations. For 34, we nd

@4 . .

@4 = iC%ai g8 (Yari Pae) ) HaaYai ¢g&+ Y1, 3)
wherethe adiabatic elimination is carried out by setting the time derivative
equalto zero. We also neglectthe excited state population %44. For 343 we
have

@4 . .

Gl il 08 i mHK) ) Htei o8 % (@
wherethe excited state coherence¥; was neglected.In similar mannerswe
nd

33 Va i gai %o and 3%, Vai ¢ga+ By (5)

Now we insert the approximations (3)-(5) into the equationsof motion (2)
and obtain

@u_@n_,
@?’;2 igg (6)
@ ¢—(a5i’ & | & & )%o
Theseequationsare reproducedby the e®ectie ground state Hamiltonian
hg? : ’
ﬁe®: i T 8 e + %2&){ & (7)

If we instead (as was done in Sec.5.2) insert the appraximations (3)-(5)
directly into the un-appraximated Hamiltonian (1) we obtain an e®ectie
Hamiltonian twice asbig which is wrong sincethe correct Eq. (6) would then
not be reproduced.



1.2 Implications on the Exp erimental Results

The erroneousfactor of two discussedabove is of courseinherited to many
equationsin the thesis chapters following the derivation of the interaction
Hamiltonian. In Eqg. (6.15) the correct interaction parameteris

o 2

5

8AC 2L

and whene\er we encourter an expressionproportional to a (or a;, a;) we
must reducethe result by a factor of two. It is not corveniert to list all the
casesherebut oneimportant equationis the estimation of the atomic to shot
noiseratio - 2 in the ertanglemer generationexperimert. We nd

2 _ 93C¢P[MW]CT[ms] ¢ay(¢) Cpc[ded
B ¢ biue[MHZ] '

On page 106 (and in di®eren papers published after the Ph.D. thesis, the

error was found in the summer of 2005) we actually discussa discrepancy
of a factor of appraximately two in the obsened atomic to shot noiseratio.

With the error found there is now a much better agreemen betweentheory
and experimert.

a=j (6.15)

(9.51)

2 Simple Errors

There is a mistake in Eq. (5.19). For F = 3 the signof a; hasto be reversed
sud that we have q
H

1 45 21
= — i 80 ! i1 8
56 1+ ¢=C ' 1+ C 5=C | ' (8)

a

Up dates

Below we list publications which are a result of work performed after the
Ph.D. thesis. Hence,this shouldnot be consideredasa part of the thesisbut
asa supplemen. | hopeit will be usefulto the reader.

2 D. V. Kupriyanov, O. S. Mishina, I. M. Solkolov, B. Julsgaard, and
E. S. Polzik, Phys. Rev. A 71, 032348(2005). This publication treats
the higherorder e®ectsasdiscussedn Chap. 6. It alsocoveresthe noise
properties of the higher order terms. Available at quant-ph/0411083.
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2 B. Julsgaard, J. Sherson,J. |. Cirac, J. Fiurasek, and E. S. Polzik,
Quantum Memory for Light, Nature 432, 482(2004). Also available at
quant-ph/0410072. This publication descritkesan experimert carried
out with a setup quite similar to the ertanglemen experimerts in the
thesis.

2 J. Sherson,B. Julsgaard, and E. S. Polzik, Distant Entanglementof
Macrosmopic Gas Samplesin Decoherence, Entanglementand Infor-
mation Protection in ComplexQuantum Systems eds.W. M. Akulin,
A. Sarfati, G. Kurizki, and S. Pellegrin (Springer, Dordrecht, 2005).
Also available at quant-ph/0408146. This publication descrikesvery
well the new entanglemert procedureasdiscussedn Sec.10.4.



