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CHAPTER 1

Outline of the Thesis

The subject of this thesis is mainly the generation of entangled states between
macroscopicobjects and the quantum mechanical understanding of the interac-
tion between polarized laser light and atomic ground state spins. The work is
primarily experimental but we also present theoretical calculations.

Di®erent readersshould read this thesis di®erently . Somechapters are meant
as pedagogicalintro ductions to the ¯eld, other chapters are very technical and
may in someoccasionsbe even clumsy! A generaland hopefully understandable
description of the work behind this thesis is of coursethe most important point.
But we acknowledgethe fact that youngerstudents or co-workers following up on
the work may ¯nd it useful to read about the detailed calculations and general
considerationswhich have required a lot of e®ort for the author of this thesis.

Chaps. 2 and 3 give the general intro duction to the ¯eld. In Chap. 2 the
physical systemof polarized laserlight interacting with atomic ground state spins
is intro duced. Chap. 3 is a broader review of the ¯eld of quantum optics and
puts our work into a general context. These chapters should be relevant for all
readers. Chap. 4 intro ducesmany generalaspectsand techniquesrelated to the
experiments. This chapter is of course mainly for experimentalists but it also
gives a general characterization of our physical system which is relevant for all
readers. Chap. 5 derives an e®ective Hamiltonian describing the light/matter
interactions and Chap. 6 states the equations of motion following this Hamil-
tonian. Thesetwo chapters are purely theoretical, the hard core experimentalist
may read the main results in Secs.6.2 and 6.3. In Chap. 7 we start to con-
sider experimental results and techniques in detail. This chapter is devoted to
the magneto-optical resonancemethod for characterizing atomic ground state
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spins. These purely classical results are very useful and extensively used for
all other experiments of this thesis. Chap. 8 describes theoretical and experi-
mental investigation of the interaction betweenlight and atoms at the quantum
level. The results demonstrate that our theoretical understanding is correct to
a high degreeand that our physical systemsare feasible for implementation of
quantum information protocols. The purely theoretical Chap. 9 and the purely
experimental Chap. 10 deal with the generation of entangled states between
macroscopiccesiumgassamples.The results presented in Sec.10.1 demonstrate
on demand creation of entangled states, this is the most important result of this
thesis. Chaps.7, 8, and 10 present experimental results of increasingimportance
and are relevant for most readers. Chap. 9 is not only for the theoretically in-
terested reader, it also covers many practical considerations necessaryfor the
understanding of the entanglement generation. Chap. 11 givesan impressionof
possiblefuture technological implementations of our research for quantum com-
munication purposes. In Chap. 12 we summarize the thesis work and give an
outlook for the future.

The appendicesare in general technical. Apps. A and B deal with the
description of polarized light and atomic spins, respectively. App. C is more or
less\text book material" on the quantum mechanical description of light/matter
interactions. The emphasisis put on continuous description of light and matter.
The reasonfor writing this down is the fact that the author (who is an experi-
mentalist) found it di±cult to ¯nd relevant referencesto text books and spent a
huge amount of time on what may be really trivial for a theorist. It is the hope
that other readers¯nd this appendix useful. App. D singlesout results of spher-
ical tensor algebra directly applicable for the derivations in Chap. 5 and is only
relevant for the theoretically interested reader. App. E reviews a few results of
photo detection theory and connectsthese to our experiments (which deal with
polarization states of light). The main problem here is time ordering of light
creation and annihilation operators and turns out to be inelegant and clumsy.
This appendix is reserved for readerswho really want to understand every detail
of the theoretical derivations in Chap. 8. App. F reviewsthe quadratic Zeeman
e®ectand is included in this thesis for completeness,it is very useful for the un-
derstanding of magneto-optical resonancespectra presented in Chap. 7. App. G
presents a few technical aspects of Langevin forces required for the theoretical
modeling of decaying spins in Chap. 8.
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CHAPTER 2

A toms and Ligh t as In teresting
Quan tum Systems

In this section we aim at explaining somegeneralproperties of atoms and light
relevant for our experiments. Both atoms and light can be described in the lan-
guageof quantum mechanics, but from our perspective this becomesinteresting
when we can couple the atomic and light degreesof freedom to each other in
order to exchangequantum information between the two. Atoms are massive
particles and therefore slow in the sensethat we experimentally can keep them
at a well controlled location for a long time. This means atoms are good for
storage of quantum information. On the contrary , light is fast and is well suited
for transporting quantum information betweenatomic systemsor to various de-
tection systems. In the following sectionswe describe in generalterms how atoms
and light experimentally can play these roles and we comment on the nature of
the interaction betweenlight and atoms.

2.1 The A tomic Ground State Spin

The experiments in this thesis are carried out using cesium atoms. One reason
for this is the fact that lasersare available for relevant transitions, another is the
fact that the de¯nition of one secondrelies on the cesiumatom. This atom was
the preferred one when I joined the Quantum Optics Laboratory four yearsago
and motivating this choice is the availabilit y of a tunable sourceof squeezedor
entangled light at atomic transitions in cesium(we usethis sourcein Chap. 8).
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Figure 2.1: (a) The 6S1=2 ground state of cesiumis split into two hyper¯ne states
with F = 3 and F = 4. If atoms are left alone the spin state will populate all
mF -sublevels evenly as depicted by small circles. (b) In the experimental work
in this thesis we are only interested in the atoms in the F = 4 state and it is
possibleto put (almost) all atoms into the outermost state with mF = 4 (with
the x-axis as direction of quantization). (c) The individual spins sum up to a
macroscopicspin along the x-axis, the transverse spin components Ĵy and Ĵz

have quantum uncertainties depicted by a gray disk, seeEq. (2.3). (d) The spin
is often shown from above sinceonly the transversecomponents have interesting
quantum properties. The new variables X̂ A and P̂A are de¯ned in Eq. (2.4). It
is in principle possible to create non-classicalstates, e.g. a squeezedstated as
shown in (e) .

The ground statesof cesiumarecharacterizedby the outermost electronwhich
is in the 6S1=2 state, i.e. the orbital angular momentum L is zero. The electron
spin S and thus the total electronic angular momentum J has quantum number
S = J = 1=2. The nuclear spin I of cesium-133has I = 7=2, and the coupling
between the nucleusand the electron gives rise to the total angular momentum
F = I + J with quantum numbers F = 3 and F = 4, seeFig. 2.1(a).

It is indeed the total angular momentum F which interests us in this thesis
since F and the magnetic quantum numbers mF de¯ne the energy levels of the
ground states. Furthermore, we will often restrict ourselves to one hyper¯ne
level, F = 4, which is possibleexperimentally sincethe hyper¯ne splitting º hfs =
9:1926GHz is large compared to typical resolutions of our laser systems. And
now a bit of confusion, we choose to denote the total angular momentum of a
single atom by j and for a collection of atoms (in the F = 4 state) we denote the
collective total angular momentum by J, i.e.

J =
NX

i =1

j ( i ) ; (2.1)

where N is the number of atoms in the F = 4 state and j ( i ) is the total angular
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momentum of the i 'th atom. The reason for using J and not F is that J is
generally more used in the literature for spins, and indeed, we wish to think
about our spins more abstractly than just the properties of someatoms. Many
results in this thesis should be applicable in a broader sensethan to a collection
of cesiumatoms.

In our experiments the number of atoms N will be of the order 1012 and we
will almost always aim at having all atoms polarized along one direction which
we denote as the x-axis, seeFig. 2.1(b). With the x-axis as quantization axis we
thus have mF = 4 for all atoms to a high degreeof accuracy, and the collective
spin Ĵx will really be a macroscopicentit y. With this experimental choice, we
may treat the x-component of the collective spin as a classicalc-number, i.e. we
replace the operator Ĵx by the number Jx . The transversespin components Ĵy

and Ĵz maintain their quantum nature. They will typically have zero or a small
meanvalue. The quantum °uctuations are governedby the commutation relation
and the Heisenberg uncertainty relation (with ¹h = 1)

h
Ĵy ; Ĵz

i
= iJ x (2.2)

) Var(Ĵy ) ¢Var(Ĵz ) ¸
J 2

x

4
: (2.3)

Pictorially , we add many small spins to a macroscopicspin, seeFig. 2.1(c), and
the direction of this macroscopicspin has no precisemeaning but can only be
de¯ned within the quantum uncertainty (depicted by the gray disk) stated quan-
titativ ely by Eq. (2.3). With 1012 atoms the angular quantum uncertainty of the
collective spin direction is of the order 10¡ 6.

To connect our spin system to quantum mechanics more generally, we note
that the classicalJx enableus to de¯ne new quantum variables X̂ A and P̂A by

X̂ A =
Ĵyp
Jx

; P̂A =
Ĵzp
Jx

; )
h
X̂ A ; P̂A

i
= i; (2.4)

where the subscript A refers to \atoms". The above is exactly on the form seen
in many text books on intro ductory quantum mechanics. Even though we know
that e.g. Ĵy has a discrete spectrum of eigenvalues, which must be inherited by
X̂ A , we e®ectively have continuousquantum operators asordinary position x̂ and
momentum p̂ when N is large. For this reasonwe can depict the transversespin
variables Ĵy and Ĵz as seenfrom above as in Fig. 2.1(d,e). The disk or ellipse
symbolizes the Heisenberg uncertainty relation as is often seenin the literature
on e.g. description of the electromagnetic ¯eld. As we shall see in Chap. 11,
protocols for quantum information processingcan be very well described in the
x; p-languagewith no speci¯c referenceto the cesiumatom.

We ¯nalize this section with a very important de¯nition. If all atoms in the
F = 4 state have mF = 4 (or mF = ¡ 4) the collective spin is said to be in the
coherent spin state 1(CSS). In this state all atoms are independent of each other

1Coherent spin states are discussed more generally in [1]
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Ŝz

x-pol y-pol

+45±-pol ¡ 45±-pol

¾+ -pol ¾¡ -pol
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For many x-polarized photons the Stokes vector has practically a classicalSx -
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uncertainty relation (2.8) symbolized by the gray disk. (c) We may restrict
ourselves to a top view of (b) since only the transversecomponents X̂ L and P̂L

play a role concerningthe quantum state. (d) Non-classicalstates of the Stokes
vector are possible,here squeezingof one quadrature.

in the sensethat the total wave function is the product function of each atom in
mF = 4. This state also ful¯ls the minimum uncertainty relation

Var(Ĵy ) ¢Var(Ĵz ) =
J 2

x

4
(coherent spin state) (2.5)

and we will seein Chaps. 9 and 10 that this equality servesas a referencepoint
for manifestly quantum states, i.e. states that have no classicalanalogue.

2.2 Polarization States of Ligh t

All experiments in this thesis involve laser light interacting with atomic spin
states, and it turns out that the polarization of the light is the relevant quantum
variable to describe. Below we intro duce the description of polarization states of
light in general terms, for a more rigorous de¯nition seeApp. A.

Now, considera pulse of light, or a collection of photons, propagating in the
z-direction. The polarization state is well described by the Stokesoperators

Ŝx =
1
2

(n̂ph (x) ¡ n̂ph (y)) ;

Ŝy =
1
2

(n̂ph (+45 ±) ¡ n̂ph (¡ 45±)) ;

Ŝz =
1
2

(n̂ph (¾+ ) ¡ n̂ph (¾¡ )) ;

(2.6)
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where n̂ph (x) is the number of photons in the pulse with x-polarization, and so
on (the di®erent ways of describingpolarization are depicted in Fig. 2.2(a)). The
Stokes operators are dimensionless,they count photons. In other chapters we
will also considerStokesoperators measuringphoton °uxes.

We shall make our ¯rst approximation right away. We assumethat almost all
photons are linearly polarized along the x-direction (we could have chosenany
direction). For a pulse containing many photons this meansthat we can treat
Ŝx ! Sx as a c-number. Note, this is very similar to the approximation of a well
polarized sampleof spins in the previous section.

It canbeshown that the Stokesvector satis¯es angular commutation relations
(seeEq. A.13), i.e.

h
Ŝy ; Ŝz

i
= iSx (2.7)

) Var(Ŝy ) ¢Var(Ŝz ) ¸
S2

x

4
(pulse of light) : (2.8)

The operators Ŝy and Ŝz are our interesting quantum variables, they usually have
zero meanvalue sincea collection of x-polarized photons have polarization § 45±

or ¾§ with equal probabilit y being one half. But we remark, that if the linear
x-polarized light is rotated by an angle µ around the z-axis the balancebetween
the § 45±-components is changedand Ŝy gets a non-zeromean value. In fact

D
Ŝy

E
= 2Sx ¢µ (for µ ¿ 1): (2.9)

We seethat Ŝy is a measureof the polarization rotation, and that the quantum
°uctuations of Ŝy can be interpreted as quantum °uctuations in the direction
of polarization. This kind of rotation will prove to be very important when we
consider the interaction of polarized light with atomic spins.

The classicalSx component and the quantum uncertainty of the Ŝy and Ŝz can
be depicted asin Fig. 2.2(b) (just like the casefor atomic spinsin Fig. 2.1(c)), the
gray disk symbolizesthe Heisenberg uncertainty relation (2.8). We may also see
this disk from above as in Fig. 2.2(c,d), wherewe have de¯ned the new quantum
variables (subscript L refers to \ligh t")

X̂ L =
Ŝyp
Sx

; P̂L =
Ŝzp
Sx

; )
h
X̂ L ; P̂L

i
= i: (2.10)

We see,as in the caseof atomic spins, the polarization quantum state of light
is similar to the standard position/momentum operators. The mathematical
equivalenceof the spin and light operators motivate the search for possibleim-
plementations of quantum information protocols that exchange quantum states
betweenlight and atoms.

If we go into a little detail with the operators X̂ L and P̂L it actually follows
from Eq. (A.14) that

X̂ L =
ây + ây

yp
2

and P̂L =
ây ¡ ây

y

i
p

2
; (2.11)
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where ây
y and ây are the creation and annihilation operators for photons with

y-polarization. In our approximation with strong linear polarization along the
x-axis the x-polarized part serves as a \reservoir" of photons controlling the
strength of the pulse. It also servesas a phasereferencefor the y-polarized part
which carries the interesting quantum °uctuations.

As a ¯nal remark of this section we consider an x-polarized pulse of light
emergingfrom a laser. Then the y-polarized mode is in the vacuum state and we
easily ¯nd

Var(Ŝy ) ¢Var(Ŝz ) =
S2

x

4
(light pulse, coherent state); (2.12)

which is actually valid for the y-polarized mode being in any coherent state. As
for atomic spins, this equality sets the benchmark point for non-classicalstates
of the light polarization. If Var(Ŝy ) = Var(Ŝz ) = Sx =2 we say that the noise of
Ŝy or Ŝz is at the so-calledshot noise level.

2.3 In teraction Bet ween A tomic Spins and
Polarized Ligh t

Let us now intro ducethe interaction of polarized light with the atomic spin state
of a sample of atoms. A detailed calculation will be given in Chaps. 5 and 6.
First, consider Fig. 2.3(a) which shows the level schemeof the 6S1=2 and 6P3=2

states of cesium. We tune a laser, which we call the probe laser, to the dipole
transition between these two levels and we may choosea detuning ¢ measured
from the F = 4 ! F 0 = 5 transition with red detuning being positive.

The polarization state of this laser light may change in di®erent ways if it
interacts with an atomic sample. First of all, the absorption of one polarization
component may be di®erent than the absorption of another polarization compo-
nent. This clearly changesthe polarization state, but we will not consider this
situation at all in this thesis. The absorption pro¯le of the transition will look
like the solid line graph in Fig. 2.3(b), in the wings it will fall o®as1=¢ 2. Going
to a su±ciently far detuning we can make absorption e®ectsnegligible compared
to dispersion e®ects,the latter fall o® as 1=¢. A typical dispersion pro¯le (for
a single F ! F 0 transition) is shown with the dashedline graph in Fig. 2.3(b).
Dispersione®ectswill changethe polarization state of light if the index of refrac-
tion is di®erent for two orthogonal polarization components, i.e. if the sample is
birefringent.

Fig. 2.3(c) shows a pulse of light propagating in the z-direction through an
atomic samplewhich is polarizedalongthe x-direction. Classically, it is clear from
simple symmetry reasoning that we may have nx 6= ny (the sample has linear
birefringence), while e.g. n+45 ± = n¡ 45± and n¾+ = n¾¡ . Thus the x-direction is
an optical axis and x- or y-polarized light will passon without change,i.e. Ŝx will
be unchanged by the interaction. If we let light with linear polarization along
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Figure 2.3: (a) The probe laser interacting with cesiumatoms and the relevant
level structure. The detuning ¢ is de¯ned relative to the F = 4 ! F 0 = 5-
transition and is positive for red detuning. (b) The absorption (solid line) and
refractive index (dashedline) in generalfor an optical transition. For su±ciently
far detuning absorption e®ectsare small sincethey fall o®faster (as 1=¢ 2) than
dispersion e®ects(fall o®as 1=¢). (c) A light pulse on an atomic samplewhich
is aligned along the x-axis will change its polarization, the sample has linear
birefringence with di®erent indices of refraction nx 6= ny . A § 45±-polarized
pulse will becomeelliptical and vice versa, i.e. Ŝy and Ŝz will change. With the
x-axis as optical axis the Ŝx component is unchanged. (d) For spins oriented
along the propagation direction, there is no preferred direction in the xy-plane,
but the sample has circular birefringence with n¾+ 6= n¾¡ . Linear polarization
will rotate, i.e. Ŝx and Ŝy change,but the Ŝz -component is unchanged.

the +45±-direction interact with the atoms, the light polarization has both an
x- and y-part which are subject to di®erent phaseshifts. This will change the
ellipticit y of the light, or in other words Ŝy and Ŝz beginto mix up. A quantitativ e
discussionof this e®ectis given in Sec.6.4, seeEq. (6.16) and (6.17).

Another example is shown in Fig. 2.3(d), where the atoms now are oriented
along the z-direction. Classically we have in this casenx = ny = n+45 ± = n¡ 45±

since there is no preferred direction in the xy-plane. But spins pointing in one
direction along the z-axis is, from a classicalview point, the sameas a charged
particle rotating in one direction around the z-axis. This suggeststhat we may
have n¾+ 6= n¾¡ , the sample has circular birefringence. The di®erent phase
shift experiencedby the ¾+ - and ¾¡ -part of the light will rotate the polarization
around the z-axis, henceŜx and Ŝy begin to mix up. The number of ¾+ - and
¾¡ -photons cannot be changedby this phaseshift, thus Ŝz is unchanged in the
process.A quantitativ e discussionof circular birefringence is given in Sec.6.2.

For our experiments the linear birefringence turns out to play a minor role
compared to the circular birefringence. Linear birefringence is non-existing for
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spin-1=2 particles2, and if the detuning ¢ is much greater than the excited states
hyper¯ne splitting ! hfs;e the probe laser only experiencesthe spin-1=2 properties
of the electron. We have approximately that linear birefringence is proportional
to ! hfs;e=¢ 2. Circular birefringenceis possiblefor a spin-1=2 particle and survives
large detunings, i.e. is proportional to 1=¢. Another way of understanding this is
that the dispersive pro¯le shown in Fig. 2.3(b) for each transition F = 4 ! F 0 =
3; 4; 5 will interfere destructively for the linear birefringence and constructively
for circular birefringence. A quantitativ e measureof the above is partly expressed
by the parametersde¯ned in Eq. (5.16).

In the following we assumethat linear birefringence is zero, and that light
and atoms are polarized along the x-direction. We are now ready to give a
qualitativ e derivation of the equationsof interaction betweenpolarized light and
atomic spins. Theseequationsare the basisof the work in this thesis.

First, when linearly polarized light passesthe atomic spin in the z-direction,
the circular birefringencecausedby the spin component Ĵz will rotate the polar-
ization of the light. Even though the meanvalue

D
Ĵz

E
may be zero the quantum

°uctuations of Ĵz causepolarization rotation. This is expressedquantitativ ely as

Ŝout
y (t) = Ŝin

y (t) + aSx Ĵz (t); (6.11)

where \in" and \out" refers to the light before and after the interaction. The
Stokes vector with strong x-component Sx is rotated by an angle aĴz around
the z-axis where a is a constant describing the strength of the interaction. The
above equation is calculated to ¯rst order with aĴz ¿ 1. This is also known as
the Faraday e®ect. We know that circular birefringence does not a®ect Ŝz and
we neglectedlinear birefringence,hence

Ŝout
z (t) = Ŝin

z (t): (6.12)

The light leaving the atomic samplecarriesinformation about the spin component
Ĵz . We seethat a measurement of Ŝout

y will give information about Ĵz , and if the
interaction constant a is large so that the secondterm of (6.11) dominates the
¯rst we can get really detailed information about Ĵz . The Heisenberg uncertainty
relation (2.3) then requires the interaction also to a®ectĴy . A calculation shows
that the time evolution of Ĵy is

@
@t

Ĵy (t) = aJx Ŝz (t): (6.13)

The physical processinvolved is the Stark shift of the magnetic sublevels de-
pending on the helicity of the light given by Ŝz . The splitting causedby the light
will, just like a constant magnetic ¯eld along the z-direction, causerotation of
the spin around the z-axis. The strong Jx component will then contribute in the

2Linear birefringence is caused by alignment terms, e.g. |̂ 2
x ¡ |̂ 2

y . For a spin-1=2 we have
|̂ 2
x = |̂ 2

y = 1=4, hence no alignment.
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y-direction, the angular rate of spin rotation being aŜz (t) where we normalized
Ŝz (t) to measurephotons per second.Finally, the Ĵz component is una®ectedby
the interaction,

@
@t

Ĵz (t) = 0: (6.14)

This follows from the fact that Ŝz is constant and the conservation of angular
momentum along the z-direction. Spin °ips along z must be accompaniedby
changesof ¾+ -photons into a ¾¡ -photons or vice versa.

The strong components Sx and Jx are e®ectively unchangedby the interac-
tion. In our experiments the typical rotation of light polarization or spin polar-
ization amounts to approximately 10¡ 6 radians, and we may clearly assumeSx

and Jx to be constant.
The above equationsare linear, they couplepolarization states of light to the

spin statesof atoms. Note, that quantum properties of the spin state can be read
out on light by (6.11) and that quantum properties of light can be fed into atoms
by (6.13). We study the °ow of quantum °uctuations of this kind in detail in
Chap. 8.

Note also, that (6.11) enablesus to measureĴz (if the ¯rst term is small),
and at the sametime (6.14) ensuresthat the state of Ĵz will not be destroyed in
the measurement process.Thus, we are able to perform quantum non-demolition
(QND) measurements of the atomic spin. This will prove very useful for genera-
tion of entangled states as we will describe in Chap. 9.
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CHAPTER 3

Motiv ation - Quan tum
Information Pro cessing and
Comm unication

In this chapter we try to give the reader an overview of the ¯eld of quantum
information processingand quantum communication. This is a part of physical
sciencewhich has grown very rapidly since the beginning of the 1990'ies. The
physicsinvolved is very interesting in itself but technological advancement is also
a motivation for studies in this ¯eld. We will brie°y touch the areasof quantum
cryptography, quantum computing, quantum communication, and precisionmea-
surements. We aim to describe for the reader where our work should be placed
in this context.

3.1 Wh y Quan tum State Engineering

In Chap. 2 we intro duced our experimental systems,spin polarized atomic sam-
ples and polarization states of light. We explicitly concentrated on quantum
variables and not classicalmean values. There are somereasonsfor this being
an interesting approach.

² Quantum states are rich in the sensethat it takes many parameters to
describe the quantum state. For our systems, which approximately are
continuouslikeposition x̂ and momentum p̂ of a particle, the quantum state
is in principle described by a wave function Ã which for each x assignsa
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complex number Ã(x), a vast amount of complex numbers. We could also
count e.g. individual spin-1/2 particles which each have a Hilb ert spaceof
dimensiontwo. The joint quantum state of n spin-1/2 particles is described
by 2n complexnumbers,an amount rapidly increasingwith n. This richness
is exploited in quantum computing protocols, aswe will discussin the next
section.

² Quantum statescannot be cloned[2]. This meansthat there is somesort of
privacy in quantum states. If I have a secretmessageencoded in a quantum
state an eavesdropper will have to steal the entire quantum state in order
to obtain this message,and accordingly I would loosethe quantum state -
a situation that I would recognizeand act upon.

² The above point also presents a very big challenge. With only one copy of
the quantum state we are very vulnerable to lossmechanisms. Information
about the quantum state can \leak" into the surrounding environment and
be inevitably lost. Excluding unwanted coupling to external degreesof
freedom is thus a big challenge.

² The fact that wecanreach a situation wherequantum mechanicsis essential
to describe the evolution of physical systems and especially the need of
quantum mechanics for the understanding of encoding and processingof
messagesis satisfactory in itself for a physicist and it may be a very crucial
step for future technological achievements.

3.2 Technological Implemen tations

In the previous section we gave somerather abstract reasonsfor quantum states
being interesting. In this sectionweconcentrate a little moreon what hasactually
beenproposedor achieved.

² Quan tum cryptograph y is an area of physics dealing with secret com-
munication. The aim is often to distribute a key between two parties,
Alice and Bob, and this key must be unknown to everyone else. Quantum
cryptography exploits the fact that quantum states cannot be cloned [2].
For instance a single photon can bear information sent from Alice to Bob.
An eavesdropper cannot steal this photon or perform measurements on it
without being recognized. Quantum cryptography has been implemented
using singlephotonsor at least weakpulseswhich very seldomcontain more
than onephoton [3]. Using singleparticles asinformation carriers is elegant
and intuitiv e. But pulsescontaining many photons have also beendemon-
strated as an implementation for secret communication [4, 5, 6, 7, 8, 9].
If our physical systemsshould be implemented for cryptography it would
possibly be along theselines.
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² Quan tum computation is a big motivation for exploiting and controlling
quantum systems. The most famous proposals are Grover's search algo-
rithm [10] and Shor's algorithm for prime factorizing integers [11]. Both
algorithms will be much faster than any known algorithms on a classical
computer. The theory of quantum computation utilizing qubits (quantum
superpositions jÃi = ®j0i + ¯ j1i of two discrete states j0i and j1i ) and a
few operations on qubits (e.g. the phasegate and the CNOT-gate) is well
developed. With an appropriate combination of thesebasicbuilding blocks
any computation can in principle be performed [12]. Many small-scaleex-
perimental demonstrations of quantum computing have been performed.
To mention a few, ion-traps have beenproposedand used[13, 14, 15] and
nuclear magnetic resonance(NMR) of moleculeshave beenusedto e.g. fac-
tor the integer N = 15 [16]. Scaling up of quantum algorithms to large
systems have not yet been implemented, since it is a very di±cult task.
The processis very vulnerable to decoherenceand must rely on quantum
error correction. A review of quantum computing including error correction
is given in [17].

The above implementations all deal with discrete quantum systems. There
are someproposalsfor quantum computation [18] and quantum error cor-
rection codes[19, 20] over continuousvariablesbut the discreteimplementa-
tions seemmore promising. In [21] it hasbeenshown how distinct coherent
states can \discretize" continuous variables and thus simulate qubits. This
proposal requires generation of superpositions of distinct coherent states
(SchrÄodinger cat states) which is a di±cult task. A proposal for gener-
ating such states in an ensemble of spin states like ours is given in [22].
SchrÄodinger cat states have beenexperimentally demonstrated for an elec-
tromagnetic ¯eld [23] and for the motional state of a trapped ion [24]

² Quan tum comm unication is the transport of (unknown) quantum states
from oneplaceto another. This could be amonge.g. two atomic samplesor
from an atomic sampleto a beam of light (these processare in somecases
called teleportation ). Again, the no-cloning theorem [2] imposessomerules
to follow. If a quantum state is to be sent from Alice to Bob, the initial
state at Alice's place must be completely destroyed in order for Bob to re-
create exactly the samestate. Also, information about the state must not
leak into the environment or be measuredby any observer in the process.
These facts require good isolation from external degreesof freedom and
someclevernessin handling the quantum states. In Chap. 11 we will show
that protocols actually exist for physical systems of our kind. In fact,
continuous systemswith many particles have an advantage over discrete
systemsin teleportation protocols. Quantum teleportation of quadratures
of the electromagnetic¯eld hasbeenachieved [25]. Teleportation of discrete
states of a photon has partly been performed [26, 27]. In these cases,
however, a complete teleportation protocol that always works is di±cult to
implement [28, 29].
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² Quan tum memory is the processof storing and retrieving a quantum
state from somelong lived physical system. This could be achieved with
the help from teleportation, e.g. the polarization state of a pulse of light
could be teleported onto the spin state of an atomic sample. After some
time (lessthan the atomic decoherencetime) we could teleport the atomic
spin state back to another pulseof light. Protocolsalong theselinesarevery
relevant for us and will be discussedin Chap. 11. Another approach toward
quantum memory is the useof electromagnetically induced transparency to
map statesof the electromagnetic¯eld onto atomic variables [30]. This has
beendemonstratedexperimentally for classicalmeanvalues[31, 32, 33] and
is a promising candidate for a real quantum memory.

² En tanglemen t generation is a key ingredient for quantum teleportation
protocols but also in itself it provides a very interesting study of quantum
mechanics. Generation of entangled states of the electromagnetic¯eld has
beenachieved in many cases,someexamplescanbe found in [34, 35, 36, 37].
One of the really famous studies of such states was the ¯rst experimental
violation of Bell's inequalities [38, 39] where the very basis of quantum
mechanics was tested. We demonstrate the creation of an entangled state
between two atomic samplesin Chap. 10. See[40, 41] for other examples
of entangled states betweenmassive particles.

² Precision measuremen ts is also a motivation for the study of quantum
states. Spin squeezingcan improve signal to noise ratios of certain mea-
surements [42]. In fact in [43] it was shown that the best cesiumfrequency
standards today are limited by the projection noise of spin states. Spin
squeezingof atomic states have beendemonstrated in [44, 45].

In short, there are many possibleimplementation of our research. Our particu-
lar physical systemswith strong light pulsesand macroscopicatomic samplesis
well suited for teleportation protocols,quantum memory protocols,entanglement
generation, and precision measurements. There will probably be someapplica-
bilit y in the ¯eld of quantum cryptography. The ¯eld of quantum computation
seemsto be the hardest problem to addresswith our present knowledge.

3.3 Con tin uous Versus Discrete Systems

Our physical systemwith many photons and many atoms lead to continuousvari-
ablesas intro duced in Chap. 2. In this sectionwe motivate the useof continuous
systemsfor light/matter interactions and we draw attention to (dis)advantages
of thesekinds of systems.

A very important motivation for using many particles is the question of in-
teraction strength. If light and atoms only induce weak changesto the quantum
state of each other we would not be able to let quantum °uctuations °ow from
one system to the other with high e±ciency. The interaction between light and
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matter is (in the dipole approximation) basically governed by the Hamiltonian
Ĥ in t = ¡ d ¢E where d is the dipole operator of the matter particle and E is the
electromagnetic ¯eld. We need this Hamiltonian to be of su±cient magnitude
which can be reached in a number of di®erent ways.

² The electromagnetic ¯eld E can be made really big. One way to do this
is to place a single particle inside a high ¯nessecavit y which may enhance
the interaction by many orders of magnitude [46].

² The dipole moment of a singleparticle can be madelarge by using Rydberg
states of atoms. Examples are given in [47].

² Yet another possibility is our approach. Using many particles we will have
a large joint dipole operator D =

P
d i and using a relatively strong ¯eld

E we may approach a strong interaction regime. The ¯gure of merit is
here Eq. (6.11), we need the secondterm aSx Ĵz to be of the order of the
¯rst term Ŝin

y to have strong coupling. With the quantum noise limited
variancesfor spins (2.5) and polarization states of a light pulse (2.12) we
concludethat Var(aSx Ĵz ) ¸ Var(Ŝin

y ) when a2Sx Jx ¸ 1. The parameter a,
which is given by Eq. (6.15), has for our setup typically a value such that
the strong coupling condition is of the order Sx Jx ¸ 1025.

Of the three approachesabove ours is by far the most simple from a technical per-
spective. We usefree propagating light through a sampleof atoms in the ground
state. When technical challengeshas beendealt with, the other two approaches
reveal a more simple and elegant quantum system than ours. Especially, the
internal atomic state is described by a low dimensionalHilb ert spacecontrary to
our practically in¯nite Hilb ert space.

Another aspect of macroscopiccontinuous systemsis robustnessto decoher-
ence. Somepeople often state mistakenly that a very big quantum system de-
coheresvery fast simply becauseof the number of particles involved. This need
not be the case. We deal with the collective properties of e.g. the spin state of
an atomic ensemble with ¼ 1012 particles. The role of each atom is totally neg-
ligible, if one atom is lost the quantum state of the ensemble will be unchanged.
If on the other hand 10% of the atoms are lost or subject to decoherencewe will
seethe e®ecton the quantum state of the collective spin variable. The atoms co-
operate in a fashion whereeach atom contributes very little but the hugenumber
of particles together make a di®erence.So, we must screenour atoms in general
from decoherence,but we neednot care about a single atom alone.

If we should concludethis chapter with somegeneral remarks about our ap-
proach with many particles and other approaches with small systemsit would
be: Large systems often have technical simplicit y from an experimental point
of view. They have a clear advantage in the ¯elds of quantum communication
but lack good ideas in the areasof quantum computation and error correction.
Small systemsare often very involved experimentally but that said the concep-
tual understanding is simple and elegant. Thesesystemshave an advantage for
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purposesof quantum computation, quantum cryptography, and error correction.
For quantum communication protocols they meet di±culties.
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CHAPTER 4

Exp erimen tal Metho ds

In this chapter we discuss general aspects of our experiments. This includes
details about lasers,glasscells with cesium atoms, magnetic ¯elds and Larmor
precession,spin life times, and optical pumping. We concentrate on properties of
lasersand atomic samplescommon to many experiments and we discusstypical
values of experimental parameters for the work presented in this thesis. More
speci¯c experimental details will be given in the di®erent chapters connectedto
the experimental results.

During the past four years we have moved laboratories twice and made a
major upgrade of the experimental setup. Some reasonsfor the upgrade are
discussedin Sec.10.2. The contents of the present chapter describe the newer
setup sincethis will be more relevant to most readers. Important di®erencesare
mentioned in other chapters when appropriate.

4.1 Laser Systems

The level scheme of cesium is shown in Fig. 4.1 together with sometransitions
at which we apply laser beams. All our interesting physics mainly takes place
in the F = 4 hyper¯ne multiplet, and we need lasers for state preparation and
manipulations. The goal is to create high quality coherent spin states.

One laser called the optical pump laser is tuned to the 6S1=2; F = 4 !
6P1=2; F = 4 transition (894nm). Its main purpose is to pump atoms into the
extreme F = 4; mF = 4 ground state magnetic sub-level which is the starting
point for many interesting experiments (seediscussionin Sec.2.1). Note, that
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Figure 4.1: The level scheme of cesium and the lasersused in the experiment.
The nuclear spin I = 7=2 createshyper¯ne splitting with F = 3; 4 of the cesium
ground state. All our experiments concentrate on atoms in the F = 4 hyper¯ne
levels and to measureproperties of these atoms the probe laser is coupled o®-
resonantly with detuning ¢ to the 6S1=2; F = 4 ! 6P3=2 transitions. The repump
laser and the optical pump laser are tuned into resonancewith the 6S1=2; F =
3 ! 6P3=2; F = 4 and 6S1=2; F = 4 ! 6P1=2; F = 4 transitions, respectively.
Theselasersredistribute atomsamongthe ground state levelsby optical pumping,
for more details seeSec.4.5.

the F = 4; mF = 4 state is a dark state if this laser has ¾+ -polarization.
Another laser called the repump laser is tuned to the 6S1=2; F = 3 !

6P3=2; F = 4 transition (852nm). This laser is responsible for taking atoms
out from the F = 3 ground state and into the F = 4 ground state. To someex-
tent the strength of this lasercontrols the number of atoms in the for us relevant
F = 4 sub-states.

The repump laserand the optical pump laserareboth homebuilt diode lasers,
a picture is shown in Fig. 4.2. During the past four years a number of di®erent
laser designshave been used, the present one being the most successful. The
diodesare anti-re°ection coatedand can be purchasedfrom Eagleyard Photonics
GmbH in Germany. The diodeswork very well but we have had someproblems
with the life time. The laser cavit y consistsof the diode back side together with
a di®raction grating with 1800 lines per mm in the Littro w con¯guration, see
Fig. 4.2(a). This ensurestunabilit y over a broad range of wavelengths. The
light passesan optical isolator and a small fraction is split o® for locking to
the right transition by frequencymodulated absorption spectroscopy [48, 49], see
Fig. 4.2(b). The remaining beamsare usedin the experiment for optical pumping
(seeSec.4.5) creating macroscopicspin states with high degreeof orientation.
The lasersare running cw, at present we createpulsesof light by acousto-optical
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Figure 4.2: The diode lasers. (a) A picture of a laser diode hidden inside a
copper block directing its beam to a di®raction grating (the small square). A
piezo-element connects the grating to a steel ball which can be ¯xed by two
screwsseenat the top. This design is cumbersometo adjust but very stable
when working. (b) The work principle of the laser. After the grating the light
passesan isolator and a small fraction is re°ected on a PBS for saturated FM
absorption spectroscopy [48, 49]. The remaining beam is shaped into pulsesby
an AOM. When lasersare working well, more than 25mW of power is available
for the experiments.

modulators (AOMs). Historically we have also been using a chopper for this
purpose, but the AOMs are much more °exible in terms of timing the laser
pulses.

A third laser called the probe laser is detuned by an amount ¢ from the
6S1=2; F = 4 ! 6P3=2; F = 5 transition (852nm). Di®erent valuesof the detuning
have beenusedaround ¢ ¼ ¡ 1GHz (negative for blue detuning). This detuning
is much smaller than the ground state hyper¯ne splitting at ¼ 9GHz (so that
light is sensitive to atoms in F = 4 only) and considerably larger than the
hyper¯ne splitting of the upper state 6P3=2 (this reduces higher order e®ects
which will be discussedfurther in Chap. 5). The probe laser beam is produced
by a MicrolaseTi:sapphire laserwhich can deliver typically around 1W of light at
852nmwhenbeingpumpedby a Coherent Verdi V8 laserdelivering 8W of light at
532nm(doubled Nd:YAG). The setup is shown in Fig. 4.3 wherealso the locking
mechanism is pictured. The locking is similar to the caseof diode lasersapart
from the fact that the part split o® is passing through a ¯b er coupled electro-
optical modulator (EOM) which createsstrong sidebandswith frequenciesup to
more than 1GHz. In this fashion detunings up to more than 2GHz are available
(we can use the secondside band for locking also). The probe laser is also a
cw laser, pulseswere historically created by a chopper but now we usean EOM
with a polarizing beamsplitter (PBS). The Verdi laserhasrelaxation oscillations
around 500kHz which are inherited in the spectrum of the probe laser. We are
vulnerable to laser noise but we ¯nd that the noise spectrum is prett y quiet
around 325kHz (it would also be quiet at high frequenciesabove 1MHz). In
Sec. 4.3 we explain that our experiments are carried out in a way where the
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Figure 4.3: The probe laser. (a) A picture of the Ti:sapphire laser, the green
532nmpump beamis clearly visible. (b) The schematic view of the lasersystem,
a Coherent Verdi V8 laser delivers 8W of pump power to the Ti:sapphire laser
which typically delivers 1W of light power at 852nm. Part of this light is sent
through an EOM to createstrong sidebandsat a chosenfrequencyof up to more
than 1GHz. The sideband is used for FM absorption spectroscopy similarly to
the diode lasersin Fig. 4.2. The main Ti:sapphire beam is shaped into pulsesby
an EOM and a PBS.

frequencycomponents around 325kHzare important. The probe laser is usedfor
quantum measurement of transversecomponents Ĵy and Ĵz of the atomic spin
and for measuringthe macroscopicsizeJx of the spin states.

The AOMs and the EOM creating laser pulsescan be programmed to pro-
duce pulseswith soft edges(not step functions). This is important, a too steep
pulse would have frequencycomponents at 325kHzcreating problems for the ex-
periment. We also examined the possibility to use an AOM for the probe laser
but found that this causedtoo much excessnoise in the laser beam. AOMs are
turned on and o® by adjusting the power of an electric RF signal (in our case
125MHz). It is a non-trivial task to turn on and o®such a signal, this is typically
done by electronic mixers. We found that for the mixers we used there was a
huge amount of noiseadded in the regime betweenon and o®,hencea quiet soft
pulse was impossibleto create. For the caseof an EOM the control is done by
a high voltage at DC. It is easyto exclude 325kHz signals from a DC-signal, or
rather our high voltage supply is not even able to work at frequenciesaround
325kHz.

4.2 A tomic Vapour Cells

Our atomic samplesare very conveniently placed inside a para±n coated glass
cell, seeFig. 4.4. The glasscell consistsof a volume not far from being a cube
with six small cylindrical extension, the internal distance between two windows
is 30mm and the volume inside the cell is roughly 18§ 1cm3. Taking the glasscell
to be box-shaped this corresponds to an e®ective transversearea Ae® ¼ 6:0cm2.
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Finger with cesium

Figure 4.4: A picture of a para±n coated vapour cell and a ruler showing the
scale, the inside separation of two sides is 30mm. Note, that windows give the
possibility to accessthe atoms with large laser beamsfrom six directions. The
¯nger contains solid droplets of cesium, the temperature of these decide the
vapour pressureand hencedensity of atoms in the entire cell volume.

For the cell shown in the ¯gure there are six windows which enableus to access
the atoms by large laser beams from di®erent directions. In addition, there is
mounted a ¯nger which contains droplets of solid cesium. The amount of cesium
vapour in the cell volume is governed by the temperature of the solid cesium.

The cesiumatoms are kept in the vicinit y of room temperature which means
that atoms are moving with velocity components of the order

1
2

mCsv2
rms ;1dim =

1
2

kB T ! v2
rms ;1dim ¼ 137m=s; (4.1)

where kB is Boltzmann's constant and mCs is the cesium atomic mass. With
a cell dimension of 30 mm it takes of the order of 200¹ s between each time an
atom collides with the cell wall. We discusslater (seeSec.4.4) that the atomic
spin life time is much longer than thesetime scales,the reasonthat atoms do not
depolarize at the wall collision is the fact that a thin layer of para±n has been
placed on the inside of the glasswalls. Our glasscells have all beenproduced by
Michael Balabas, S. I. Vavilov State Optical Institute, St. Petersburg, Russia,
for further information about the physics of para±n coated cells we refer to
[50, 51, 52].

Atoms moving at room temperature also causeDoppler broadening of the
optical line by an amount (seee.g. [53])

±º D;HWHM =
º 0

c

r
2 ln 2kB T

mCs
= 189MHz; (4.2)

where º 0 is the optical frequency, c the speedof light, and we chosetemperature
T = 300K. In our experiments we are concernedwith dispersive e®ectsand not
absorption. This also requires the probe laser beam to have a su±ciently far
detuning ¢ À 189MHz.



24 Chapter 4 - Experiment al Methods

The fact that atoms move around gives some advantages. First of all, the
probe laser beam cannot ¯ll the whole cell volume but the motion of atoms
ensuresthat all atomswill passthe beamat somestageduring each measurement.
There will also be someaveraging e®ectsof atomic motion, someatoms will be
closer to optical resonancethan others, but at a later stage these atoms may
be further from resonance. For su±ciently long measurement times all atoms
will experiencethe sameinteraction conditions with the laser beam. And ¯nally ,
possibleinhomogeneitiesof magnetic ¯elds causedi®erent Larmor frequenciesfor
di®erent atoms, but someaveraging reducesthis e®ect(this is discussedmore in
Sec.4.4).

4.3 The Rotating Frame and Magnetic Fields

All our experiments are carried out with atoms being placed in a constant homo-
geneousmagnetic ¯eld B along a direction which we de¯ne as the x-axis in this
thesis. This will split the magnetic sub-levels and causespin precessionaround
the direction of the magnetic ¯eld. In App. F we give a detailed discussionof
the splitting of magnetic sub-levels, herewe just state that we choosea magnetic
¯eld of magnitude ¼ 0:9Gausswhich corresponds to precessionfrequency (Lar-
mor frequency) of ­ = 325kHz. There are several advantagesand dis-advantages
of this magnetic ¯eld.

Let us examine the implications of the static magnetic ¯eld on the equations
of motion intro duced in Sec.2.3 and stated quantitativ ely in Eqs. (6.11-6.14).
The magnetic ¯eld contribution to the Hamiltonian is Ĥ = ¹h­ Ĵx where ­ is
the Larmor frequency. This changesEqs. (6.13) and (6.14) into @̂Jy (t)=@t =
¡ ­ Ĵz (t) + aJx Ŝin

z and @̂Jz (t)=@t = ­ Ĵy (t), while Eqs. (6.11) and (6.12) are
una®ected.If we intro duce rotating frame coordinates (marked with a prime)

Ĵ 0
y (t) = + Ĵy (t) cos(­ t) + Ĵz (t) sin(­ t);

Ĵ 0
z (t) = ¡ Ĵy (t) sin(­ t) + Ĵz (t) cos(­ t);

(4.3)

a little algebra shows that the equationsof motion are turned into

Ŝout
y (t) = Ŝin

y (t) + aSx

³
Ĵ 0

y (t) sin(­ t) + Ĵ 0
z (t) cos(­ t)

´
; (4.4)

Ŝout
z (t) = Ŝin

z (t); (4.5)

@
@t

Ĵ 0
y (t) = aJx Ŝin

z (t) cos(­ t); (4.6)

@
@t

Ĵ 0
z (t) = aJx Ŝin

z (t) sin(­ t): (4.7)

Our ¯rst observation is the fact that the dynamicsof the rotating spin component
are encoded around the ­ = 325kHzsidebandof Ŝout

y . Lasersare in generalmuch
more quiet at higher sideband frequenciescompared to the carrier and sincewe
are interested in quantum °uctuations of light and atoms interacting with each



4.3. The Rot ating Frame and Ma gnetic Fields 25

(b)

Aluminum RF-coil

Bias field coils

Glass cell

(c)(a)

Laser beam access

Figure 4.5: Pictures of the cell mounts and the magnetic ¯eld coils. (a) The
glass cell is here placed in an aluminum block which can be heated or cooled
by water. Close to the cell we seea set of coils which are used for creating a
horizontally polarized RF-magnetic ¯eld. (b) The next layer consists of eight
coils with di®erent number of windings to create a homogeneousbias magnetic
¯eld along the vertical direction. (c) At the outsideweplacetwo layersof ¹ -metal
and one layer of iron to protect the atoms from external magnetic ¯elds.

other we cannot have our signals dominated by much stronger technical noise
sources.

Having rotating spins also enableus to measuretwo orthogonal components
Ĵ 0

y and Ĵ 0
z with onelaserpulseas long as the measurement time T is much longer

than the Larmor period ­ ¡ 1. This fact will beclari¯ed in Sec.9.4whenwediscuss
entanglement generation. But the presenceof the magnetic ¯eld will at the same
time force us to measureboth transversespin components with the simultaneous
pile up of noiseaccording to (4.6) and (4.7). This is a strong limitation in some
cases,seee.g. the discussion in Sec. 11.3. For a single spin sample the QND
nature of the measurement has disappeared.

The energy splitting causedby the magnetic ¯eld ensuresthat all magnetic
sub-levelsarenon-degenerate.This is important sincethe energybarrier prevents
atoms from doing spin °ips at a collision. This will bediscussedfurther in Sec.4.4
but wecannow refer to Fig. 4.6showing the spin life time T1 versusthe magnitude
of the constant magnetic ¯eld B .

The magnetic ¯eld homogeneity must be of su±ciently good quality. If this
is not the case,di®erent atoms following di®erent paths in spacewill accumulate
di®erent phasesand the joint spin state of atoms will decohere. This will be
discussedin detail below in Sec. 4.4. The experimental setup for creating a
high quality magnetic ¯eld with good stabilit y is shown in Fig. 4.5. In part (a)



26 Chapter 4 - Experiment al Methods

we seethe glasscell mounted inside a plastic cylinder in a block of aluminum.
The aluminum can be heated or cooled by water and hencecontrols the glass
cell temperature1. A set of coils placed close to the cell enable us to create a
horizontally polarized RF-magnetic ¯eld. The role of this is to modulate the spin
state, seethe discussionin Chap. 7. In Fig. 4.5(b) we seethe coils creating the
constant high quality magnetic ¯eld. Eight coils with equalspacinghave di®erent
number of windings optimized for high homogeneity. Three independent current
sourcesconnectedto these coils allow further optimization of the homogeneity.
The current sourcedriving thesecoils hasa relative stabilit y better than 10¡ 5. In
Fig. 4.5(c) we show the outermost magnetic shielding consisting of two layers of
¹ -metal and oneiron layer. The top and bottom are alsoshieldedand we exclude
laboratory ¯elds from a®ectingthe atoms. All together we createa magnetic ¯eld
of su±cient quality, in next section we discussquantitativ ely the requirements
for the magnetic ¯eld.

4.4 Spin Life Times

The life time of our macroscopicspin states with a large spin component Jx

along the x-axis and transversespin components Ĵy and Ĵz is well described by
two characteristic times T1 and T2 (which are well known conceptsfrom the lit-
erature). T1 is the decay time of the longitudinal spin Jx following the model
Jx (t) = Jx (0)e¡ t=T 1 and T2 is the samefor transversecomponents. We usually
have T1 ¼ 200-300mswhich is much longer than T2 · 30ms. The decay mecha-
nisms of Jx must overcomean energy barrier set by the splitting causedby the
magnetic ¯eld. The transversedecay will also be a®ectedby phase°uctuations
and henceT2 can be much faster than T1. We often characterize the transverse
life time by a line width or decoherencerate ¡[Hz ] = (¼T2[s])¡ 1 and in this chap-
ter we often discussthe rate ¡ com which is a decoherencerate common to all
magnetic sub-levels. This rate is discussedmore carefully in Chap. 7 where we
alsodiscussin detail the methods for measuringboth T1 and T2. In the following
we discussseveral experimental parameters that a®ectT1 and T2.

As mentioned above the static magnetic ¯eld B giving rise to the Larmor
precessionmust be of a su±cient quality. In Fig. 4.6(a) we show the T1 life time
measuredas a function of the magnitude of B . We seethat there is a threshold
of the magnetic ¯eld strength of about 0.03Gaussabove which we may obtain
long spin life times T1. Our working point is far above this point and we have
usually T1 valuesof somehundreds of milliseconds.

In Fig. 4.6(b) we seethe transversedecoherencerate ¡ as a function of an
applied magnetic ¯eld gradient. We seethat the rate increasesquadratically with
the gradient, we can understand this with help from a simple model discussed
in [54]. First, divide the atomic sample into two parts, 1 and 2, along the

1At the time of writing we are working on replacing the alumin um by non-metallic compo-
nents. Random currents in the alumin um have proved to create magnetic noise disturbing the
experiments, seeSec. 10.3.
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Figure 4.6: (a) T1 versusmagnetic ¯eld strength. We seethat a too low ¯eld
(below ¼ 0:03Gauss)prevents long spin life time. Our usual working point is
around B = 0:93Gaussfor which the spin life time yields somehundred millisec-
onds, here 380ms. (b) The magnetic ¯eld also needsa su±cient homogeneity to
prevent dephasingof the spins. We plot the decoherencerate given by the line
width ¡ com versus an applied magnetic ¯eld gradient and observe the increase
of decoherencerate with increasing gradient. The measurement methods are
explained in detail in Chap. 7.

bias magnetic ¯eld direction. If the sample length is L and the bias ¯eld B has
strength B0, the ¯eld strength in the two parts will be of order B0 § @Bx =@x ¢L
and the di®erencein Larmor frequency will be (gF ¹ B =¹h)@Bx =@x ¢L according
to (F.4). We follow an atom during the time T it takesfor it to decohere.If v is a
typical speedof the atomic motion, the number of visits n1 in part 1 or n2 in part
2 will be of order Tv=L, sinceeach visit hasduration L=v. The di®erencen1 ¡ n2

hasmeanzeroand standard deviation of the order std(n1 ¡ n2) =
p

Tv=L. Thus
the uncertainty ±Á in the accumulated phaseduring Larmor precessionis

±Á ¼
gF ¹ B

¹h
@Bx

@x
L ¢

L
v

¢std(n1 ¡ n2) ¼ 1

) ¡ inh ¼
1
T

¼
³ gF ¹ B

¹h

´ 2 L 3

v

µ
@Bx

@x

¶ 2

: (4.8)

In the ¯rst line we set ±Á equal to unit y sincethis is the situation after the time
of decoherenceT. We seethat the broadening ¡ inh by inhomogeneitiesscales
quadratically with the ¯eld gradient. If we take gF ¼ 1=4 (seeeq. (F.5)), L =
0:030m, v =

p
kB T=mCs = 137m/s at T = 300K, we get gF ¹ B =¹h = 350Hz/mG

and expect the broadening to be ¡ inh = 0:024Hz¢m2=mG2 ¢(@Bx =@x)2.
The experimental investigation can be seenin Fig. 4.6(b) and we de¯nitely

con¯rm the scaling law predicted above. The numbers match within a factor of
two which puts somecon¯dence to our simple model but this is probably also
partly luck since we were very crude in the model with respect to factors of 2
and ¼.
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Figure 4.7: (a) The role of probe power broadening on spin decoherencerate
¡ com . We observe the expected linear dependencefrom Eq. (4.9), the numbers
are commented on in the text. Note, that we may also deducethe decoherence
rate in the dark by this method, herewe get ¡ dark = 6:1Hz which corresponds to
a spin coherencetime T2 = 52ms. (b) The spin decoherencerate versusatomic
density. These data give a typical picture, the decoherencerate increasesin a
non-linear manner with increasing density. The density is controlled by raising
the temperature of the vapour cell and measuredby polarization rotation, see
Eq. (6.9).

In Chap. 7 we will learn that having ¡ inh < º QZ is important, where º QZ is
the quadratic Zeemansplitting of someresonancespectra we utilize for spin state
characterization (seethe example in Fig. 7.2(b)). Comparing our experimental
result with the splitting due to the quadratic Zeemane®ect(F.7) we ¯nd for our
particular setup that in order to have ¡ inh < º QZ we must have 1=B ¢@B =@x ¢L <
1:2 ¢10¡ 3.

Another processleading to spin decoherenceis the scattering of photons from
the probe laser when atoms undergo real transitions. Even though the probe
laser is detuned by ¼ 1GHz and the populations of excited state levels are very
small they arenot zero. The scattering rate ¡ ph canbeestimatedby the two-level
atom result (seee.g. [55])

¡ ph =
°
2

s
1 + s

¼
3I ¸ 3° 2

16¼2¹hc¢ 2 ; (4.9)

where s = I =I sat

1+(2¢ =° )2 is the saturation parameter. I is the beam intensity with
I sat = 2¼2¹hc°=3¸ 3 being the saturation intensity. ¸ is the optical wave length, °
is the natural line width of the optical transition, and ¢ is the detuning (assumed
much greater than ° in the last step of the equation). If we insert typical exper-
imental conditions I = 1mW=cm2, ¢ = 875MHz, ¸ = 852nm, and ° = 5:21MHz
we get ¡ ph = 132Hz. This can be compared to experimental results shown
in Fig. 4.7(a). First, however, we need to observe that the scattering rate de-
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pends only weakly on beam size for a ¯xed power. This e®ectis causedby the
atomic motion in and out of the beam. Even though the probe intensity can be
strong, the atoms will only spend little time inside the beam if the size is small.
The vapour cell geometry suggestsan e®ective crosssectional area of the cell of
Ae® ¼ 6cm2. Then the experimental observation ¡ com [Hz] = 6:1 + 6:0 ¢P[mW]
corresponds to ¡ ph [Hz] ¼ 36 ¢I [mW=cm2]. The experimental spin decoherence
rate is herea factor of almost 4 smaller than the simple two-level atom estimate.
We will not here try to do more correct quantitativ e estimatesbut just mention
that the order of magnitude is correct.

The last decoherencemechanism we will comment on is the dependenceon
atomic density, seeFig. 4.7(b). These data are typical, the decoherencerate
increasesin a non-linear fashion with the atomic density. If the decoherenceis
causedby inter-atomic collisions we would expect the rate to increasequadrati-
cally with density, there is probably a quadratic contribution in the ¯gure. But
the situation is more complicated than this. The changein temperature may af-
fect the properties of the para±n, we have experimentally observed many strange
kinds of dynamicswithout understanding them very well. Also, the temperatures
are closeto the cesiummelting point at 28.4±C degreeswhich may also give rise
to complicated e®ects.We do not wish to understand all theseprocessesin detail
as long as we can measurethem. The main point is that at our working values
of atomic density (up to 1011cm2) we have a reasonabledecoherencerate but we
cannot go much further up without sacri¯cing the coherencetime.

4.5 Optical Pumping

A very crucial part of our experiments is optical pumping. In Sec.2.1 we already
mentioned the fact that we are interested in atoms in the hyper¯ne state F = 4
only and wecommented on the importanceof atomsbeing in the extrememF = 4
state (or closeto this state) during the experiments. This is the so-calledcoherent
spin state and we will seein Chap. 9 that the abilit y to createthis state is crucial
for entanglement generation.

We will not herecomment in detail about the theory of optical pumping, it is
a whole scienti¯c ¯eld in itself and a review is given in [56]. The basicidea behind
optical pumping is simple though and can beeseenin Fig. 4.8. The repump laser
and optical pump laserwhich weredescribed in Sec.4.1 are applied to the atoms
with circular polarization. After some time the extreme F = 4; mF = 4 state
is reached by many atoms. Depending on the strength of the repump laser a
fraction of atoms will be in someof the F = 3 states and hencenot contributing
to the collective spin state measuredby the probe laser. The abilit y to adjust the
magnitude Jx of the spin state will prove to be important in Chaps.8, 9, and 10.

A very important property of the atomic spins in the F = 4 states is the
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Figure 4.8: The principle of optical pumping, we wish to put all atoms into the
F = 4; mF = 4 magnetic sub-state. To this end we apply two ¾+ -polarized lasers,
the optical pump lasershown on the left part and the repump lasershown on the
right part of the ¯gure. The ¯gure on the left shows an examplewhere an atom
is in the state F = 4; mF = 2. The optical pump lifts this atom into the excited
F = 4; mF = 3 state from where it may decay into the ground states F = 3 or
F = 4 with mF = 2; 3; 4. The mF value will never decreasein this processand
will on averageincrease. If mF = 4 is reached the atom is in a dark state and
will not move further. The occasionaldecay to the F = 3 states is counteracted
by the repump laser shown on the right. The number of atoms in the relevant
F = 4 states can be adjusted by the power of the repump laser.

orientation de¯ned by

p =
1
F

FX

¡ F

m ¢ĥ¾m;m i ; (4.10)

where F = 4 in our caseand ¾̂m;m is the density operator describing the popu-
lation of atoms in the magnetic sub-statesjF = 4; mF = mi . If all atoms are in
m = 4 the orientation is equal to unit y. For a completely unpolarized samplewe
have p = 0.

An experimental exampleof obtained orientations is shown in Fig. 4.9 where
the orientation of a sample of cesium is studied while the power of the ¾+ -
polarized optical pumping laser is increased.The pump light is on resonanceand
contributes to the decoherenceof the spin state with a rate ¡ pump (this will be
carefully de¯ned in Sec.7.2). This rate is plotted on the abscissain the ¯gure
and is a direct measureof how many optical pump photons each atom scatters
on average per second. We see that a few photons per second are su±cient
for obtaining a high degreeof orientation, in this example 97%. This should
be compared to a typical decay time T1 of some hundreds of milliseconds, see
Sec.4.4. The repump laser is on at all times here and with its ¾+ -polarization
it helps creating an oriented sample. The repump laser alone can here be seen
to generatea 82% oriented sample. The methods for measuring orientation is
described in detail in Chap. 7.

We have obtained polarizations of up to more than 98% for higher densities.
The optical pumping laser at the 894nmD1-line is essential to this achievement.
We have tried to optically pump on the D2-line with somewhatlower orientation
asa result (a little above p = 0:9). A possibleexplanation is that the re-scattered
light on the F = 4, mF = 4 ! F = 5, mF = 5 transition from one atom
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Figure 4.9: An example of orientation p measuredfor increasing power of the
optical pump laser. On the abscissawe plot the power broadening ¡ pump caused
by the optical pump laser which in turn is a measure of the strength of the
pumping process.For zero optical pump power the orientation of 82% is created
solely by the ¾+ -polarized repump laser. Note, that a high degreeof orientation
(here¼ 97%) is reachedwith a moderateamount of pumping. The atomic density
is of the order 1010cm¡ 3.

a®ectsthe state of other atoms. Indeed, according to [57], even with a dark
state when using 894nmpumping light onewould expect problemswith densities
higher than a critical density ½C = (¾R)¡ 1 becauseradiation will be trapped
inside the sample. Here ¾ is the crosssection for light absorption and R is the
extent of the gas sample. Our atomic sample is Doppler broadened with the
width ±º D = 378MHz. With a natural line width of the 894nm D1-transition of
° = 4:6MHz and a sampleextent of R = 3cm we estimate the critical density ½C

to be roughly ½C ¼ [¸ 2=2¼¢° =±º D ¢R]¡ 1 = 2¢1011cm¡ 3. This is only a little more
than our typical values. However, the experiments tell us that the limitations
are still small.

Optical pumping into the coherent spin state with all atoms in the state
jF = 4; mF = 4i can also be seenfrom another perspective. This state ful¯lsD

Ĵy

E
=

D
Ĵz

E
= 0 and any deviation from this state is counteracted by optical

pumping. In Chap. 8 we model the optical pumping by equations @̂Jy (t)=@t =
¡ ¡ Ĵy (t) + F̂ y (t) and @̂Jz (t)=@t = ¡ ¡ Ĵz (t) + F̂ z (t) where ¡ describes the rate
of optical pumping and the operators F̂ y;z are Langevin forcesensuring correct
quantum statistics. Optical pumping is in this sensea cleanup of whatever state
has beencreatedby other processes.If e.g. two spin samplesare in an entangled
state the optical pumping will drive the spin state back to being two independent
coherent spin states.
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CHAPTER 5

The E®ectiv e In teraction
Hamiltonian

In this section we will consider the real cesium atom with its hyper¯ne split
ground and excited states. We couple theseatoms o®-resonantly to the 6S1=2 !
6P3=2 dipole transition and we aim at the derivation of an e®ective Hamiltonian
to describe the physics of this interaction at the quantum level. We neglect
absorption e®ectsand spontaneous emission which is justi¯ed if the detuning
from the optical transition is large enough. We are left with dispersive e®ects
which essentially arise from the shift of atomic energy levels in presenceof light
¯elds. This is known as the Stark e®ect. As we already brie°y mentioned in
Sec. 2.3, the interaction enables us to measure the spin state of atoms, and
properties of the polarization state of light will at the sametime be fed into the
spin state of atoms.

This kind of interaction has beenstudied for sometime now, for a historical
review see [56] and referencestherein. The idea of using the interaction for
QND measurements was given in [58, 59] and the calculations in the present
chapter is closely related to these references. We will concentrate more on the
continuous description of light and matter sincethis is convenient for describing
the time dynamics that we actually measure. We also put attention to the fact
that cesium is not a spin-1/2 system. This gives rise to higher order terms
of the interaction. We end up with an e®ective Hamiltonian (5.18) which is a
very convenient starting point for further calculations. The derivation is rather
technical, we put many details in Apps. A-D.
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5.1 Electric Dip ole In teractions

We assumethat the light interacting with the atoms has a crosssectional area
A À ¸ 2 where¸ is the wave length of the light. Then a onedimensional theory is
su±cient and we only needto careabout two polarization modes. With the prop-
agation direction (z-axis) as quantization axis the electric ¯eld description (C.9)
will be generalizedto

E =

r
¹h! 0

2²0A

³
â+ (z; t)e+1 + ây

+ (z; t)e¤
+1 + â¡ (z; t)e¡ 1 + ây

¡ (z; t)e¤
¡ 1

´
; (5.1)

where the unit vectorse§ 1 and ¯eld operators â§ (z; t) and ây
§ (z; t) are discussed

in Eqs.( A.6) and (A.7). The dipole operator d = ¡ er of a single atom can
conveniently be expressedin tensor components. We write the vector r as

r = e¤
+1 r+1 + e¤

0r 0 + e¤
¡ 1r ¡ 1; (5.2)

where the tensor components of r are given by

r+1 = ¡
x + iy

p
2

; r 0 = z; r ¡ 1 =
x ¡ iy

p
2

: (5.3)

With this de¯nition the dipole operator can be expressed

d =
X

F ;m ;F 0;m 0

³
d¡

F ;m ;F 0;m 0e¤
+1 + d0

F ;m ;F 0;m 0e¤
0 + d+

F ;m ;F 0;m 0e¤
¡ 1

´
¾̂F ;m ;F 0;m 0 + h:c:;

(5.4)
where we let F and m sum over ground state levels while the primed letters F 0

and m0 sum over excited states. The dipole moments are de¯ned as

d¡
F ;m ;F 0;m 0 = ¡ ehF; mj r +1 jF 0; m0i ;

d0
F ;m ;F 0;m 0 = ¡ ehF; mj r 0 jF 0; m0i ;

d+
F ;m ;F 0;m 0 = ¡ ehF; mj r ¡ 1 jF 0; m0i :

(5.5)

The interaction Hamiltonian Ĥ in t = ¡
P

d j ¢E(R j ) will contain the above dipole
moments and the factor

p
¹h! 0=2²0A. We absorbtheseinto a singlecoupling con-

stant g§
F ;m ;F 0;m 0 =

p
! 0=2¹h²0Ad§

F ;m ;F 0;m 0 and the generalization of the Hamilto-
nian (C.15) will turn into (in the rotating wave approximation)

Ĥ in t = ¹h
X

F ;m ;F 0;m 0

Z L

0

³
[g+

F ;m ;F 0;m 0â+ (z; t)

+ g¡
F ;m ;F 0;m 0â¡ (z; t)]¾̂F 0;m 0;F ;m (z; t) + h:c:

´
½Adz:

(5.6)

Here, the ¯rst term contains the annihilation operator â+ (z; t) for a photon at po-
sition z with polarization ¾+ . This operator is accompaniedby the density opera-
tor ¾̂F 0;m 0;F ;m (z; t) which will take an atom from the ground state jF; mi into the
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excited state jF 0; m0i thereby absorbing the photon at position z. The strength
of this particular transition is governedby the coupling constant g+

F ;m ;F 0;m 0 which
is non-zeroonly if m0 = m + 1, while g¡

F ;m ;F 0;m 0 is non-zerofor m0 = m ¡ 1. These
selectionrules and the actual valuesof the coupling constants will be calculated
carefully in App. D. The values will turn out to be real, and we have omitted
the complex conjugation of thesein (5.6).

We also needto state the atomic Hamiltonian to have all fundamental equa-
tions at hand. For the moment we assumethat the energy levels of the ground
statesaredegenerate(there is e.g.no static magnetic¯eld present) and wespecial-
ize to one of the hyper¯ne ground states, i.e. F = 4. A possiblenon-degeneracy
can be accounted for later. We get for the atomic Hamiltonian

Ĥatom =
5X

F 0=3

X

m 0

Z L

0
¹h(! 0 + ¢ F 0)¾̂F 0;m 0;F 0;m 0(z; t)½Adz: (5.7)

Here ! 0 is the laser frequency which is detuned ¢ F 0 from the upper state with
total angular momentum F 0. The density operator ¾̂F 0;m 0;F 0;m 0(z; t) measures
the probabilit y for an atom at position z of being in the excited state jF 0; m0i
and ¹h(! 0 + ¢ F 0) assignsthe appropriate energy in this case.

5.2 The O®-resonan t Limit

We will now changethe interaction Hamiltonian (5.6) into an e®ective Hamilto-
nian which dependson the light amplitudes and the ground state spin operators.
We can do this if we assumethe optical laser ¯eld to be su±ciently far detuned
from atomic resonance.In this casethe population of the excited states is neg-
ligible and the coherenceŝ¾F ;m ;F 0;m 0 between the ground states jF; mi and the
excited states jF 0; m0i will follow the ground state and the light ¯eld adiabati-
cally. We carefully work out the adiabatic elimination and solve for the coherence
¾̂F ;m ¡ 1;F 0;m (z; t) in the following.

The time evolution of ¾̂F ;m ¡ 1;F 0;m (z; t) is governedby the Heisenbergequation

@̂¾F ;m ¡ 1;F 0;m (z; t)
@t

=
1
i ¹h

h
¾̂F ;m ¡ 1;F 0;m (z; t); Ĥ

i

= ¡ i (! 0 + ¢ F 0)¾̂F ;m ¡ 1;F 0;m (z; t)

¡ ig+
F ;m ¡ 1;F 0;m â+ (z; t)¾̂F ;m ¡ 1;F ;m ¡ 1(z; t)

¡ ig ¡
F ;m +1; F 0;m â¡ (z; t)¾̂F ;m ¡ 1;F ;m +1 (z; t);

(5.8)

where the commutation relation (C.17) has beenusedon the Hamiltonian (5.6)
and two terms proportional to ¾̂F 0;m ;F 0;m (z; t) and ¾̂F 0;m ¡ 2;F 0;m (z; t) have been
neglected(no population in the excited states). The next step is to acknowledge
that the light amplitudes â+ (z; t), â¡ (z; t) and the coherence¾̂F ;m ¡ 1;F 0;m (z; t)
are oscillating fast with frequencies! 0 and ! 0 + ¢ F 0 respectively. We go into the
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rotating frame of the light ¯eld by intro ducing slowly varying operators

¾̂F ;m ¡ 1;F 0;m (z; t) = ~¾F ;m ¡ 1;F 0;m (z; t)e¡ i! 0 t and â§ (z; t) = ~a§ (z; t)e¡ i! 0 t ;
(5.9)

i.e. a tilde marks the operator to be slow. Now the slow version of (5.8) becomes

@~¾F ;m ¡ 1;F 0;m (z; t)
@t

= ¡ i¢ F 0~¾F ;m ¡ 1;F 0;m (z; t)

¡ ig+
F ;m ¡ 1;F 0;m ~a+ (z; t)¾̂F ;m ¡ 1;F ;m ¡ 1(z; t)

¡ ig ¡
F ;m +1; F 0;m ~a¡ (z; t)¾̂F ;m ¡ 1;F ;m +1 (z; t):

(5.10)

On the right hand sidewe now have a fast term oscillating at ¢ F 0 >> T ¡ 1 where
T is a typical time scalefor the variation of the last two terms. Then it is justi¯ed
to put the time derivative equal to zero1 and we get

~¾F ;m ¡ 1;F 0;m (z; t) =
¡ 1
¢ F 0

h
g+

F ;m ¡ 1;F 0;m ~a+ (z; t)¾̂F ;m ¡ 1;F ;m ¡ 1(z; t)

+ g¡
F ;m +1; F 0;m ~a¡ (z; t)¾̂F ;m ¡ 1;F ;m +1 (z; t)

i
;

~¾F ;m +1; F 0;m (z; t) =
¡ 1
¢ F 0

h
g¡

F ;m +1; F 0;m ~a¡ (z; t)¾̂F ;m +1; F ;m +1 (z; t)

+ g+
F ;m ¡ 1;F 0;m ~a+ (z; t)¾̂F ;m +1; F ;m ¡ 1(z; t)

i
;

(5.11)

where we have also stated the result for the coherence~¾F ;m +1; F 0;m (z; t). The
physical interpretation of the above equation is quite simple. In the ¯rst line we
seekthe coherence~¾F ;m ¡ 1;F 0;m , i.e. we want to know to which extent our atomic
state is in a superposition between the ground state jF; m ¡ 1i and the excited
state jF 0; mi . Such a superposition can be created in two ways.

In the ¯rst term on the right hand side, the population in the ground state
jF; m ¡ 1i parametrized by the density operator ¾̂F ;m ¡ 1;F ;m ¡ 1 is driven coher-
ently toward the excited state jF 0; mi by the ¯eld â+ with strength g+

F ;m ¡ 1;F 0;m .

The secondterm describesanother possibility, the atomic state could already
be in a superposition betweenthe ground states jF; m ¡ 1i and jF; m + 1i . This
is parametrized by the density operator ¾̂F ;m ¡ 1;F ;m +1 . The fraction of the atomic
wave function in the state jF; m + 1i can then be driven into the excited state
jF 0; mi by the ¯eld ~a¡ with strength g¡

F ;m +1; F 0;m .

The solutions (5.11) can now be substituted into the interaction Hamilto-

1This is the adiabatic elimination, it can be shown to be equivalent to neglecting terms of
magnitude ¢ F 0T times smaller than the retained terms.
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nian (5.6) to obtain an e®ective Hamiltonian;

Ĥ e®
in t =

X

m

Z L

0

nh
c+ (¢ ; m)ây

+ (z; t)â+ (z; t)

+ c¡ (¢ ; m)ây
¡ (z; t)â¡ (z; t)

i
¾̂F ;m :F ;m (z; t)

+ b(¢ ; m)
h
ây

¡ (z; t)â+ (z; t)¾̂F ;m +1; F ;m ¡ 1(z; t)

+ ây
+ (z; t)â¡ (z; t)¾̂F ;m ¡ 1;F ;m +1 (z; t)

i o
½Adz:

(5.12)

This Hamiltonian only works on time scaleslong compared to ¢ ¡ 1
F 0 since this is

the approximation in the adiabatic elimination. We have intro duceda number of
coe±cients for brevity. The terms containing c§ (¢ ; m) describe the Stark shift
of the ground state jF; mi causedby the coupling to the excited state jF 0; m § 1i .
The coe±cient is given by

c§ (¢ ; m) = ¡ 2¹h
X

F 0

(g§
F ;m ;F 0;m § 1)2

¢ F 0
: (5.13)

The terms containing b(¢ ; m) describe the possibility to change ground state
from jF; m ¡ 1i to jF; m + 1i through the excited state jF 0; mi by absorption of
a ¾+ photon and emissionof a ¾¡ photon (or vice versa). The coe±cient is

b(¢ ; m) = ¡ 2¹h
X

F 0

(g+
F ;m ¡ 1;F 0;m ) ¢(g¡

F ;m +1; F 0;m )

¢ F 0
: (5.14)

The coe±cients (g§
F ;m ;F 0;m § 1)2 and (g+

F ;m ¡ 1;F 0;m ) ¢(g¡
F ;m +1; F 0;m ) are calculated

in App. D, seeEqs. (D.12-D.14). Note, the denominator ¢ F 0 in the above two
equations exclude us from applying the sum rules (D.15-D.17) and the entire
description becomesa little more complicated. We notice however that we can
group terms containing 1, m, m2 from (D.12) and the square root from (D.14)
such that (still for the special caseof F = 4)

c§ (m; ¢) = ¡
¹hc°
4A¢

¸ 2

2¼
(a0 §

1
2

a1m + a2m2);

b(m; ¢) = ¡
¹hc°
4A¢

¸ 2

2¼
a2

p
(4 + m)(5 + m)(4 ¡ m)(5 ¡ m);

(5.15)

where the coe±cients a0, a1, and a2 are given by

a0 =
1
4

µ
1

1 ¡ ¢ 35=¢
+

7
1 ¡ ¢ 45=¢

+ 8
¶

! 4; (F = 4)

a1 =
1

120

µ
¡

35
1 ¡ ¢ 35=¢

¡
21

1 ¡ ¢ 45=¢
+ 176

¶
! 1;

a2 =
1

240

µ
5

1 ¡ ¢ 35=¢
¡

21
1 ¡ ¢ 45=¢

+ 16
¶

! 0;

(5.16)



38 Chapter 5 - The Effective Intera ction Hamil tonian

Blue detuning (- ) [MHz]D
0 500 1000 1500 2000 2500 3000

10

1

0.1

0.01

0.001

a
a

a
0

1
2

,
, a

nd

a0 ! 4

a1 ! 1

a2 ! 0

Figure 5.1: The parametersa0, a1, and a2 de¯ned in Eq. (5.16) for F = 4. These
parametrize the strength of the 0th, 1st, and 2nd order terms in the Hamilto-
nian (5.18), respectively. On the vertical axis is the blue detuning (¡ ¢), and
the arrows indicate the limit for ¡ ¢ ! 1 . We remind ourselves that the cal-
culations are only valid for dispersive e®ects.Becauseof Doppler broadening we
should be careful at low detunings.

wherewe have chosento denote the detunings ¢ F 0 as¢ 50 = ¢, ¢ 40 = ¢ ¡ ¢ 45,
and ¢ 30 = ¢ ¡ ¢ 35. Red detuning corresponds to positive valuesof ¢ and the
arrows indicate the limit ¢ ! §1 . The valuesof a0, a1, and a2 are depicted in
Fig. 5.1. If we insert the expressions(5.15) into (5.12) we end up with

Ĥ e®
in t = ¡

¹hc°
4A¢

¸ 2

2¼

X

m

Z L

0

³
a0

h
ây

+ â+ + ây
¡ â¡

i
¾̂m;m

+
a1

2

h
ây

+ â+ ¡ ây
¡ â¡

i
m¾̂m;m

+ a2

h
ây

+ â+ + ây
¡ â¡

i
m2¾̂m;m

+ a2

p
(4 + m)(5 + m)(4 ¡ m)(5 ¡ m)£

h
ây

¡ â+ ¾̂m +1 ;m ¡ 1 + ây
+ â¡ ¾̂m ¡ 1;m +1

i´
½Adz;

(5.17)

where the (z; t) is left out for brevity. The density matrix operators and the
light operators â§ , ây

§ are grouped in a nice way here, the light ¯eld operators
can be written in terms of Stokesoperators, seeEqs. (A.8-A.12), and the terms
containing density operators can be expressedas spin operators with help from
Eqs. (B.3) and (B.6-B.8). With these substitutions we may ¯nally write the
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e®ective Hamiltonian as

Ĥ e®
in t = ¡

¹hc°
4A¢

¸ 2

2¼

Z L

0

³
a0 ¢Á̂(z; t) + a1 ¢Ŝz (z; t)|̂ z (z; t)

+ a2

h
Á̂(z; t)|̂ 2

z (z; t) ¡ Ŝ¡ (z; t)|̂ 2
+ (z; t) ¡ Ŝ+ (z; t)|̂ 2

¡ (z; t)
i´

½Adz:

(5.18)

Let us comment on the di®erent terms. The ¯rst term containing a0 will just give
a Stark shift to all atoms independent on the internal state but proportional to
the photon density p̂hi(z; t). The secondterm containing a1 rotates the Stokes
vector S and the spin vector J around the z-axis, known as Faraday rotation.
The last terms proportional to a2 are higher order couplings between the light
and the atoms. All these terms conserve individually the z-projection of the
total angular momentum of light and atoms, e.g. the Ŝ¡ |̂ 2

+ term can changea ¾+

photon into a ¾¡ photon (changing the light angular momentum along z by ¡ 2¹h
while the atoms receive 2¹h mediated by the atomic raising operator j 2

+ . The total
angular momentum must have its z-projection invariant sincethe physical system
is axially symmetric around the direction of light propagation (the z-axis). We
remember that the parametersa0, a1, and a2 depend on the detuning ¢ and they
are given in Eq. (5.16) for the caseof F = 4. In general,the term proportional to
a1 is useful for us and the higher order terms proportional to a2 create di®erent
problems. This will be discussedfurther in Chap. 6 where the calculations also
will comparethe magnitude of the a1 and a2 terms more quantitativ ely.

We could have performed all the stepsin this section for F = 3 and endedup
with the sameresult, only the a-parameterswould be a little di®erent, they are
stated below for completeness.

a0 =
1
28

µ
25

1 + ¢ 24=¢
+

63
1 + ¢ 23=¢

+ 24
¶

! 4; (F = 3)

a1 =
1
56

µ
¡

45
1 + ¢ 24=¢

+
21

1 + ¢ 23=¢
+ 80

¶
! 1;

a2 =
1

112

µ
5

1 + ¢ 24=¢
¡

21
1 + ¢ 23=¢

+ 16
¶

! 0;

(5.19)

wherewe just havechosento denotethe detunings¢ F 0 as¢ 2 = ¢, ¢ 3 = ¢ + ¢ 23,
and ¢ 4 = ¢ + ¢ 24. Note, red detuning still corresponds to positive ¢, and the
limits for ¢ ! §1 are the sameas in (5.16) for F = 4.

Concluding this chapter we remind ourselves of the approximations of the
Hamiltonian (5.18). We assumedo®-resonant interactions, i.e. there are no ab-
sorption e®ectsin our description. This led us to the adiabatic elimination which
is valid if optical beamsare far from saturating the optical transition. We made
no speci¯c assumptionsabout the spin state of atoms or the polarization state of
light, and therefore the Hamiltonian is in generala good starting point for many
calculations involving what is essentially the Stark e®ect.
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CHAPTER 6

Propagation Equations

In Chap. 5 we derived an e®ective Hamiltonian for the o®-resonant interaction
of polarized laser light with an atomic spin ensemble. In this chapter we will
take thesecalculations one step further to derive actual equations of motion for
our interesting spin state operators Ĵy , Ĵz and Stokesoperators Ŝy , Ŝz . We start
out by deriving propagation equationsin generaland we will learn that theseare
in fact quite complicated. To couple collective spin operators to collective light
operators we need to perform the approximation that the higher order terms
proportional to a2 of the Hamiltonian (5.18) can be neglected. Doing this we
arrive at the most important equationsof this chapter, Eqs. (6.11-6.15). We will
then estimate the role of the higher order terms for our experimental purposes.
Like the previouschapter, the derivations aresomewhattechnical. To understand
the experiments of this thesis the results of Secs.6.2 and 6.3 are important.

6.1 General Propagation Equations

We shall be concernedwith the spin operators |̂ x (z; t), |̂ y (z; t), and |̂ z (z; t) and
the Stokes operators Ŝx (z; t), Ŝy (z; t), and Ŝz (z; t) where we continue the nota-
tion of Chap. 5. For the spin operators we state the Heisenberg equations (e.g.

@̂| z (z; t)=@t = 1=i¹h ¢
h
|̂ z (z; t); Ĥ

i
) where we for a start take Ĥ to be the inter-

action Hamiltonian (5.18). Possiblemagnetic ¯elds acting on the spin operators
can be added later. With help from the commutation rules of App. B.3 and
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Eq. (C.18) we get

@
@t

|̂ x (z; t) =
c°

4A¢
¸ 2

2¼

n
a1Ŝz |̂ y (6.1)

+ a2

³
2Ŝy [|̂ x |̂ z + |̂ z |̂ x ] ¡ (2Ŝx ¡ Á̂)[|̂ z |̂ y + |̂ y |̂ z ]

´ o
;

@
@t

|̂ y (z; t) =
c°

4A¢
¸ 2

2¼

n
¡ a1Ŝz |̂ x (6.2)

+ a2

³
¡ (2Ŝx + Á̂)[|̂ x |̂ z + |̂ z |̂ x ] ¡ 2Ŝy [|̂ z |̂ y + |̂ y |̂ z ]

´ o
;

@
@t

|̂ z (z; t) =
c°

4A¢
¸ 2

2¼
a2

n
4Ŝx [|̂ x |̂ y + |̂ y |̂ x ] ¡ 4Ŝy [|̂ 2

x ¡ |̂ 2
y ]

o
; (6.3)

wherewe for brevity have left out the (z; t)-notation on all operators on the right
hand side. For the Stokes variables we can easily generalizeEq. (C.8) to be
directly applicable to Stoke operators

µ
@
@t

+ c
@
@z

¶
Ŝ(z; t) =

1
i ¹h

h
Ŝ(z; t); Ĥ in t

i
: (6.4)

Furthermore, we may in the following neglect e®ectsof retardation, that is we
assumethe speed of light c is in¯nite. Since we in Chap. 5 already restricted
ourselves to describing dynamics on a long time scale by deriving an e®ective
Hamiltonian this does not imposestrong restrictions. Neglecting retardation is
mathematically equivalent to leave out the @=@t term above. Then we get

@
@z

Ŝx (z; t) =
° ½
4¢

¸ 2

2¼

n
a1Ŝy |̂ z + a2 ¢2Ŝz [|̂ x |̂ y + |̂ y |̂ x ]

o
; (6.5)

@
@z

Ŝy (z; t) =
° ½
4¢

¸ 2

2¼

n
¡ a1Ŝx |̂ z ¡ a2 ¢2Ŝz [|̂ 2

x ¡ |̂ 2
y ]

o
; (6.6)

@
@z

Ŝz (z; t) =
° ½
4¢

¸ 2

2¼
a2

n
2Ŝy [|̂ 2

x ¡ |̂ 2
y ] ¡ 2Ŝx [|̂ x |̂ y + |̂ y |̂ x ]

o
; (6.7)

where we again leave out the (z; t)-notation on the right hand side. Equa-
tions (6.1-6.3) and (6.5-6.7) are coupled to each other, and they are not even
closed. On the right hand side we seespin operators like e.g. |̂ x |̂ y + |̂ y |̂ x which
again from Heisenberg's equations will get its own time evolution, and so on.
From here we can go into many di®erent directions depending on the actual
physical system under consideration. For the rest of this chapter we special-
ize into di®erent relevant cases,and we will also in theseconnectionsgive some
physical interpretations to the equationsabove.

6.2 Probing a Macroscopic Ensemble of Orien ted
Spins

A simple and useful tool for characterizing an ensemble of oriented atomic spins
is the Faraday rotation of a linearly polarized laser beam propagating along
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the direction of atomic spin orientation. We assumethat a sample of spins are
oriented along the direction of light propagation, i.e. the z-axis, and we will
neglectquantum °uctuations for the moment. In this casethe only spin operator
with non-zero mean value in the equations of Sec.6.1 is |̂ z in the propagation
equationsfor Ŝx and Ŝy . If a beamof light traversesa sampleof atoms of length
L we may show that the classicalvaluesof the Stokesoperators evolve as

Sout
x = Sin

x cos(2µF ) ¡ Sin
y sin(2µF );

Sout
y = Sin

x sin(2µF ) + Sin
y cos(2µF );

(6.8)

where the angle µF is given by (in radians)

µF = ¡
a1° ¸ 2½L

16¼¢
¢ĥ| z i : (6.9)

If a linearly polarized beam of light is rotated by the angle µ, the Stokesvector
will be rotated 2µ. Thus, in the above, µF is the polarization rotation caused
by the spin orientation along the direction of light propagation. The equations
are valid for both F = 3 and F = 4 in the cesium ground state, where a1 ¼ 1
de¯ned in Eq. (5.19) or (5.16) is depending on F . ° is the FWHM line width of
the excited 6P3=2 state, ¸ is the optical wave length of the transition, ½is the
atomic density, and ¢ is the optical detuning (red beingpositive), L is the sample
length, and ĥ| z i is the expectation value of the total angular momentum along
the direction of light propagation of a single atom in the sample. We will seein
Chap. 7 that this polarization rotation is a very useful tool for characterizing the
spin state of an atomic ensemble.

6.3 Probing Transv erse Spin Comp onents

The most essential physical setting in this thesis is the situation of a macroscopic,
oriented samplealong the x-direction with an o®-resonant probe propagating in
the z-direction. In this casethe probe measuresa transverse spin component
which is interesting to us at the level of quantum °uctuations, as mentioned in
the intro ductory Chap. 2.

In this sectionweneglectthe higher order e®ectsof the atom/ligh t interaction,
i.e. we assumea2 = 0 in the equationsof Sec.6.1. We have chosenthe x-axis to
coincidewith the direction of spin orientation, and we shall alsoassumea linearly
polarized probe along the x-direction (which actually is not strictly important,
we could have chosenany direction). The interaction will practically be such that
the state of light and the state of atoms do not deviate much from this situation,
and we may describe the x-components of the spin j and the Stokesoperator S
by constant c-numbers, i.e. Ŝx ! Sx and |̂ x ! j x . Under theseassumptionswe
have a zero on the right hand side of Eqs. (6.1, 6.3, 6.5, 6.7). Equations (6.2)
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and (6.6) yield

@
@t

|̂ y (z; t) = ¡
c°

4A¢
¸ 2

2¼
¢a1Ŝz (z; t)j x ;

@
@z

Ŝy (z; t) = ¡
° ½
4¢

¸ 2

2¼
a1Sx |̂ z (z; t):

(6.10)

Sincewe herehave j x and Sx constant in the whole sampleof atoms we can easily
integrate over z to get equations for the collective properties of the sample. We
de¯ne the collective spin variable (with capital letter J ) Ĵx =

RL
0 |̂ x (z; t)½Adz

and so on for y; z-components. We also note that with @̂Sz (z; t)=@z = 0 we may
write c¢Ŝz (z; t) = Ŝin

z (t) wherethe latter is the Stokesvector Ŝz at the beginning
of the samplenormalized to photons per second.Summarizing the above we get
equations

Ŝout
y (t) = Ŝin

y (t) + aSx Ĵz (t); (6.11)

Ŝout
z (t) = Ŝin

z (t); (6.12)
@
@t

Ĵy (t) = aJx Ŝin
z (t); (6.13)

@
@t

Ĵz (t) = 0; (6.14)

a = ¡
°

4A¢
¸ 2

2¼
a1: (6.15)

The Stokesoperator Sx is classical,and Ŝy , Ŝz are the quantum variables of the
light polarization state normalized to photons per second. For atoms with Jx

being classicalwe have quantum variables Ĵy and Ĵz normalized such that they
describe the total spin of all atoms in the sample, i.e. Jx is of the order of the
number of atoms in the sample. The interaction parameter a depends on the
FWHM line width ° of the excited state 6P3=2, the optical wave length ¸ , the
detuning ¢ (red being positive), the beam crosssection A, and the parameter
a1 ¼ 1 de¯ned in Eq. (5.19) or (5.16). Physically, a is the rotation angle of
the macroscopicspin J around the z-axis per circularly polarized photon, or the
rotation angle in Stokesvector spaceof S around the z-axis per unit of angular
momentum along the z-axis. The above equations are the cornerstone for all
experiments in this thesis. We remark that they arise from the ¯rst order terms
proportional to a1 in the equationsof Sec.6.1. The term aSx Ĵz (t) in Eq. (6.11)
enablesus to read out properties of the spin state to the light. At the sametime
the term aJx Ŝin

z (t) of Eq. (6.13) feedsnoiseback to the spins. We often call the
latter term for the back action term.
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6.4 Inclusion of Higher Order Terms

Now, let us turn to the higher order terms proportional to a2 of the equation
in Sec.6.1. For simplicit y, we will assumethat the atoms are oriented almost
perfectly along the x-axis. This is in general the casefor our experiments. We
start out by an analysisof the classicalmeanvalues. In this casethe only non-zero
spin operators on the right hand side of the equations in Sec.6.1 are ĥ| x i ¼ § F
and

­
|̂ 2
x ¡ |̂ 2

y

®
¼ F (F ¡ 1

2 ), seeEq. (B.15). The e®ectof the |̂ 2
x ¡ |̂ 2

y terms can be
understood by considering the propagation of a beam of light which is initially
linearly polarized along e+45 = (ex + ey )=

p
2. Then the most important terms

of Eqs. (6.6) and (6.7) can be written

@
@z

Ŝy (z; t) = + kŜz (z; t) and
@
@z

Ŝz (z; t) = ¡ kŜy (z; t)

with k = ¡
a2° ½
4¢

¸ 2

2¼
F (2F ¡ 1);

(6.16)

where Eq. (B.15) was used to evaluate |̂ 2
x ¡ |̂ 2

y . The solution of these equations
is simply

Ŝy (z; t) = + Ŝy (0; t) cos(kz) + Ŝz (0; t) sin(kz);

Ŝz (z; t) = ¡ Ŝy (0; t) sin(kz) + Ŝz (0; t) cos(kz):
(6.17)

This is nothing more than the birefringence of the atomic sample which is ori-
ented along the x-axis (with the x- and y-axes as major axes). The di®erence
in phaseshift experiencedby x- and y-photons turns linear polarization into cir-
cular polarization and vice versa. This is a complication to the simple physical
setup described in Sec.2.3 wherea strong linearly polarized beamof light passes
through the atomic samplewith constant Ŝz -component and the Ŝy -component
only reading out the spin component Ĵz . But there is more to this, the term
Ŝy (|̂ 2

x ¡ |̂ 2
y ) in Eq. (6.3) will change the mean value of |̂ z . This is just another

way of stating, that if Ŝz is subject to changes these will also a®ect |̂ z since
the projection of the total angular momentum along z must be conserved. Also,
in Eq. (6.17) if Ŝz in the propagation builds up a considerablenon-zero mean
value the terms proportional to Ŝz in Eqs. (6.1) and (6.2) will start rotating the
macroscopicspin around the z-axis. This again a®ectŝ| 2

x ¡ |̂ 2
y which started it all.

We seethe complicated structure of the interaction now and we really wish to
minimize thesee®ects.To characterize the strength of thesee®ectsthe relevant
parameter is kL where k is given in Eq. (6.16) and L = 3:0cm is the length of
our atomic samples. For F = 4 we can conveniently relate kL to µF de¯ned in
Eq. (6.9) by

kL =
7¼
90

a2

a1
µF [deg]: (6.18)

For a typical detuning ¢ = ¡ 1GHz and a corresponding typical large value of
µF ¼ 30degweget kL ¼ 7%which wehave to keepin mind. kL will decreasewith
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detuning and with atomic density, it is an atomic property and is independent
on the power of the laser.

The term |̂ 2
x ¡ |̂ 2

y describes alignment in the xy-basis. In the equations of
Sec.6.1 there are also spin terms |̂ x |̂ y + |̂ y |̂ x which in a completely analogous
way describe the alignment along the directions rotated by § 45± in the xy-plane.
These will have non-zero mean if we chooseto orient atoms along either of the
§ 45±-directions instead of the x-direction.

To sum up so far, for mean valueswe understand all terms on the right hand
side of Eqs. (6.5-6.7), terms including a1 give rise to the Faraday e®ectcaused
by circular birefringence. The terms including a2 are responsible for the linear
birefringence.

But equations are also valid for °uctuations, quantum or classical. For our
experiments we should keep in mind that with our constant bias magnetic ¯eld
and the rotating frame, seeSec.4.3, we should concentrate on frequencycompo-
nents around the Larmor frequency ­ for what regards |̂ y , |̂ z , Ŝy , and Ŝz . For
instance, since |̂ 2

x ¡ |̂ 2
y ¼ F (F ¡ 1

2 ) primarily has a DC component, it is the AC
components of Ŝy and Ŝz which couple to each other in Eqs. (6.6) and (6.7).
Similarly, from the fact that Eq. (B.13) consists of ¯rst o®-diagonalelements,
we know that |̂ x |̂ y + |̂ y |̂ x primarily has frequency components at ­. Then it is
the DC component of Ŝx and AC component of Ŝy that contribute to the time
evolution of |̂ z in Eq. (6.3).

Taking these considerationsinto account we conclude that DC terms of the
time evolution of |̂ x aresmall. Thus for a sampleoriented alongthe x-direction we
have a prett y stable system. What regardsEq. (6.2) the spin operator |̂ y |̂ z + |̂ z |̂ y

is small and has frequency components at 2­. This must couple to frequency
components at ­ or 3­ of Ŝy for the product to contribute at ­ in the time
evolution of |̂ y . AC components of Ŝy are small independent of the direction of
probe polarization, so we neglect the last term of Eq. (6.2).

Now, turn to the last term of Eq. (6.3). Since |̂ 2
x ¡ |̂ 2

y is a DC term, the
AC components of Ŝy at ­ will feed into |̂ z . This term can have a considerable
magnitude, we wish to compareit to our favorite term which is the a1Ŝz |̂ x back
action term of Eq. (6.2). When we measurenoise properties we have to square
the °uctuations, and the correct comparisonbetweenthe unwanted pile up in |̂ z

and the wanted back action noise(BAN) in |̂ y is

Bad pile up
BAN

= 4(2F ¡ 1)2
µ

a2

a1

¶ 2 Noise(Ŝy )

Noise(Ŝz )
: (6.19)

For our typical valuesof detuning we have a2=a1 ¼ 10¡ 2 and the above tells us
that (Bad pile up)/BAN ¼ 0:02 ¢Noise(Ŝy )=Noise(Ŝz ) for F = 4. If our laser
beam is polarized along the x- or y-axis with a clean linear polarization, the
noise of Ŝy and Ŝz at the frequency ­ will most likely both be limited by shot
noise, i.e. by quantum noise (amplitude noise of the laser does not feed into Ŝy

and Ŝz in the caseof clean linear polarization). In this casethe unwanted noise
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only contributes ¼ 2% of the total noise pile up. But if we choose arbitrary
polarization directions in the xy-plane, the Ŝy -component will have non-zero
mean value, and the °uctuations at ­ will essentially be the amplitude noiseof
the laser at ­. In this case, to keep the last term of Eq. (6.3) from piling up
extra noise requires the laser intensity to be shot noise limited at ­ (which is a
more di±cult condition to meet than clean linear polarization). We thus have
one motivation for choosing the laser to be polarized along the x- or y-direction
and not in between.

Now, let us turn to the |̂ x |̂ z + |̂ z |̂ x term of Eq. (6.2) and the |̂ x |̂ y + |̂ y |̂ x term
of Eq. (6.3). Thesespin operators have frequencycomponents at ­ and we must
then consider the DC components of (2Ŝx + Á̂) and 4Ŝx , respectively. In the
following we show, that the e®ectof theseterms changethe Larmor frequency­
by a small amount, and we wish to calculate this for di®erent directions of the
linearly polarized laser.

To this end, assumethat the laserhasphoton °ux Á(t) and is polarized along
e1 = cos(®)ex + sin(®)ey . Then we have mean values
D

c(2Ŝx (z; t) + Á̂(z; t))
E

= (cos(2®)+ 1)Á(t) and
D

4cŜx (z; t)
E

= 2cos(2®)Á(t):

(6.20)
Furthermore, since we assumea strong orientation along the x-axis we may re-
late the spin operators |̂ x |̂ y + |̂ y |̂ x and |̂ x |̂ z + |̂ z |̂ x to |̂ y and |̂ z by Eqs. (B.13)
and (B.14). After somealgebra we deducethat the time evolution of |̂ y and |̂ z

become

@
@t

|̂ y (z; t) = ¡
µ

­ + ­ S
cos(2®) + 1

2

¶
|̂ z (z; t) + : : : ; (6.21)

@
@t

|̂ z (z; t) = +
µ

­ + ­ S
2cos(2®)

2

¶
|̂ y (z; t) + : : : ; (6.22)

wherethe dots remind us that there are more terms in Eqs. (6.2) and (6.3) which
we leave out for brevity. Above ­ is the magnetic ¯eld contribution and ­ S is a
Stark induced contribution normalized such that ­ S is the extra contribution for
® = 0, i.e. for light polarization parallel to the spin orientation along the x-axis.
We have ­ S given by (in Hertz)

­ S[Hz] =
° ¸ 2a2

16¼2A¢
¢Á(t) ¢2(2F ¡ 1)¾j x : (6.23)

Now, if ® 6= 0 the parentheses in Eqs. (6.21) and (6.22) are unequal, but for
­ À ­ S we may easily show that the e®ective Larmor frequency becomesthe
averageof the two parentheses.This amounts to

­ e®[Hz] = ­[Hz ] +
° ¸ 2a2

16¼2A¢
¢Á(t) ¢(1 + 3cos(2®)) ¢

(2F ¡ 1)¾j x

2
; (6.24)

where ¾j x = § 1 for ĥ| x i = § F . We seethe Stark contribution to the Larmor
frequency acts in opposite directions for oppositely oriented spin samples. In-
serting typical values for the detuning ¢ = 1GHz and for the laser intensity of
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1mW/cm 2 we obtain a shift in Larmor frequency of 160Hz for ® = 0. For two
oppositely oriented spin samplesthe di®erencein Larmor frequencyunder these
conditions is 320Hz. This can be a problem, but the shift is reduced to zero
if ® = 54:7±. Thus we have a motivation for choosing polarization directions
di®erent from the x- or y-directions. But this opposesour desireto be polarized
exactly along the x- or y-direction where pile up of laser noiseis small according
to Eq. (6.19). We shall study this Stark shift experimentally in Sec.7.6 where
we also present an alternativ e calculation of the changein Larmor frequency.

To concludethis section, we cannot easily solve analytically the equationsof
motion with the higher order terms proportional to a2 included. The collective
variables loosetheir meaningin this case.The most important e®ectsinclude the
mixing (6.17) of Ŝy and Ŝz by linear birefringence, the possiblepile up of laser
noise discussedaround Eq. (6.19), and the shift in Larmor frequency discussed
in Eq. (6.24). The Ŝy , Ŝz mixing has strength parametrized by kL ¼ 7% in the
typical case. The laser noise pile up will probably be a few percent for x- or
y-polarized probe beam. The e®ectsof the Stark shifted Larmor frequency will
be present for x- or y-polarization and absent for ® = 54:7±.

We alsorepeat the fact that Eqs. (6.1-6.3) and (6.5-6.7) are not closed,but for
a well oriented samplewith ĥ| x i ¼ § F and with the approximations in Eqs.(B.12-
B.14) we do have a closedset of linearly coupled equations. Even in this casean
analytical solution will be very cumbersome. We shall not pursue any solution
in this thesis.
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CHAPTER 7

A tomic State Characterization

In this chapter we develop methods for the characterization of the atomic spin
states that occur in di®erent contexts in our experiments. We have several mo-
tivations for this; we would like to know the number of atoms in our sample
(especially in order to check scalingsof noiseaswe will discussin Sec.9.5), know
the degreeof orientation to tell whether we are in the coherent spin state or close
to it, measurethe decoherencetime of the state for estimating the life time of
interesting quantum states. We are able to addressall the above questions. The
contents of this chapter are published in [VI I I].

We start out with somenotation. We will considera samplewith N atoms in
one hyper¯ne ground state F of cesiumand describe the spin state with density
operators ¾̂ij given by

¾̂ij =
1
N

NX

k=1

¾̂(k )
ij =

1
N

NX

k=1

ji i k hj jk ; (7.1)

wherei; j = ¡ F; ¡ F + 1; : : : ; F , the sum is doneover all individual atoms and jj i k
refer to the magnetic sub-level with mF = j of the k'th atom. With the x-axis
asquantization axis we may expressthe total macroscopicangular momentum J
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Ŝout
y (t)

E
/

D
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Figure 7.1: (a) The setup for magneto-optical resonance.A constant magnetic
¯eld B bias is applied parallel to the atomic spin orientation along the x-axis. An
RF-magnetic ¯eld is applied along the y-axis, and the Ĵz component of the spin
is measuredby a probe laser propagating along z. Magnetic resonancee®ects
are read out optically by the probe in the photo current i (t). (b) The energy
levels of the magnetic sub-levels of the F = 3 and F = 4 ground states in cesium
according to Eq. (F.2). We operate at Bbias ¼ 1Gausswhich is far into the lower
linear regime where quadratic e®ectsare small.

of the atoms in the hyper¯ne state F as

Ĵx = N
X

m

m¾̂m;m ; (7.2a)

Ĵy = N
F ¡ 1X

m = ¡ F

C(F; m)
2

f ¾̂m +1 ;m + ¾̂m;m +1 g; (7.2b)

Ĵz = N
F ¡ 1X

m = ¡ F

C(F; m)
2i

f ¾̂m +1 ;m ¡ ¾̂m;m +1 g; (7.2c)

where C(F; m) =
p

F (F + 1) ¡ m(m + 1), seeEqs. (B.9-B.11). In addition to
the number of atoms N we seethat the macroscopicspin Ĵx is described by the
diagonal terms ¾̂m;m and the quantum variables Ĵy and Ĵz are described by the
¯rst o®-diagonal terms ¾̂m;m +1 . We need to characterize each of the relevant
density operators in detail in terms of magnitude and decoherencetime.

7.1 The Magneto-Optical Resonance Metho d

We will usethe so-calledmagneto-optical resonanceto investigate the spin state
of atoms, the basic setup is shown in Fig. 7.1(a). Atoms are placed in an ex-
ternal, constant magnetic ¯eld B bias as discussedin Sec.4.3. Applying another
external radio frequency(RF) magnetic ¯eld we may induce transitions between
the magnetic sub-levels if the RF is in resonancewith the level splitting. More
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exactly, as we will derive below, the RF-magnetic ¯eld couplesto and drivesthe
coherenceŝ¾m;m +1 and ¾̂m +1 ;m . According to Eq. (7.2c) this will lead to a mod-
ulation of the spin component Ĵz . This modulation can be read out optically
by a probe laser, i.e. the photo current i (t) of the detector setup of Fig. 7.1(a),

which measuresŜy , will be proportional to the mean value
D

Ĵz

E
according to

Eq. (6.11).
The energy of the magnetic sub-levels of an atom in an external magnetic

¯eld B can be calculated and is given without approximation in Eq. (F.2). These
levels are shown in Fig. 7.1(b). We seethat for low magnetic ¯elds the energy
dependenceon the magnetic ¯eld strength is linear with small correctionscaused
by the presenceof the hyper¯ne splitting. In our experiments the magnetic ¯eld
strength Bbias is around 1 Gausswhich meansthat non-linear correctionsarevery
small. We shall still include them to secondorder, which gives the Hamiltonian
for a single atom with total angular momentum j

Ĥ = gF ¹ B j ¢B + O(B 2); (7.3)

where ¹ B is the Bohr magneton and the gF -factor is de¯ned in Eqs. (F.4)
and (F.5). The bias magnetic ¯eld along the x-axis contributes gF ¹ B Jx Bbias +
O(B 2

bias ) to the Hamiltonian while the RF-magnetic ¯eld directed alongthe y-axis
contributes gF ¹ B Ĵy jBRF j cos(! t + Á) where the RF-magnetic ¯eld is character-
ized by the amplitude jBRF j, frequency! , and phaseÁ. Retaining only the linear
term is su±cient here. The Hamiltonian may now be written

Ĥ =
FX

m = ¡ F

¹h! m ¢¾̂mm

+
gF ¹ B

4

¡
|̂ + BRF e¡ i! t + |̂ ¡ B ¤

RF ei! t ¢;

(7.4)

where |̂ § = |̂ y § i |̂ z and BRF = jBRF je¡ iÁ is the complex amplitude. The
¯rst term is the bias magnetic ¯eld contribution where we take the secondorder
corrections into account by explicitly stating the energy levels ¹h! m of the m'th
sub-level. The secondorder correction is calculated in Eq. (F.7) and will be
discussedin more detail in the next section. The secondterm is the RF-magnetic
¯eld contribution in the rotating wave approximation. We may wish to write the
Hamiltonian entirely in terms of the density operators ¾̂ij :

Ĥ =
FX

m = ¡ F

¹h! m ¢¾̂mm

+
gF ¹ B

4

F ¡ 1X

m = ¡ F

¡
C(F; m)¾̂m +1 ;m BRF ei! t + h.c.

¢
(7.5)

which follows directly from Eqs. (7.2b) and (7.2c). The equations of motion are



52 Chapter 7 - Atomic St ate Chara cteriza tion

now determined by

@̂¾ij

@t
=

1
i ¹h

h
¾̂ij ; Ĥ

i
+ decay terms; (7.6)

where the ¯rst term is the coherent evolution of the system, and the interaction
with the environment will be put in by hand as decay terms.

We will now solve Eqs. (7.5) and (7.6), and to illuminate the method for solv-
ing theseequations,we will pick out a singleexampleand work it out thoroughly.
The time derivative of e.g. ¾̂12 is

@̂¾12

@t
=

1
i ¹h

h
¾̂12; Ĥ

i
¡ ¡ =2 ¢¾̂12

= ¡ i (! 2 ¡ ! 1)¾̂12 ¡ ¡ =2 ¢¾̂12

+
igF ¹ B

4¹h

©
C(F; 1)[¾̂22 ¡ ¾̂11]BRF e¡ i! t

+ [C(F; 0)¾̂02 ¡ C(F; 2)¾̂13]B ¤
RF ei! t ª ;

(7.7)

wherewe have just inserted the Hamiltonian (7.5) into (7.6) and addedthe decay
term, ¡ ¡ =2 ¢¾̂12. We will restrict ourselves to a description of spins in the case
where Ĵy ; Ĵz ¿ Jx , i.e. the angle µ that the spins deviate from being oriented
along the z-axis is much less than unit y. From Eqs. (7.2a-7.2c) the order of
magnitude can roughly be written asO(¾̂m +1 ;m ) ¼ µ¢O(¾̂m;m ), and following the
samelinesO(¾̂m +2 ;m ) ¼ µ2¢O(¾̂m;m ). It is then justi¯ed to neglectthe coherences
¾̂02 and ¾̂13 in the aboveequation. For brevity wewill de¯ne ! 21 = ! 2 ¡ ! 1, which
is the frequency corresponding to the transition from mF = 2 to mF = 1. This
frequency is the Larmor frequency which typically has values around 325kHz.
This is fast compared to the inverse time scale for dynamical evolution of the
spin state which never exceeds1kHz. Since the RF-magnetic ¯eld frequency !
will be in the vicinit y of ! 21 it will be convenient to de¯ne the slowly varying
operators

¾̂ij = ~¾ij e¡ i! t : (7.8)

Using this de¯nition, Eq. (7.7) will turn into

@~¾12

@t
= (i [! ¡ ! 21] ¡ ¡ =2)~¾12

+
igF ¹ B

4¹h
C(F; 1)BRF [¾̂22 ¡ ¾̂11]:

(7.9)

The constant ¡ will describe the decay of the transversespin components. With
the small angleassumptionµ ¿ 1 the population di®erence(¾̂22 ¡ ¾̂11) will not be
a®ectedby the RF-magnetic ¯eld. In addition, the typical life time of populations
is T1 ¼ 200¡ 300msand we can safely assume(¾̂22 ¡ ¾̂11) to be constant. Any
decays of populations can even be compensatedby external pumping processes.
With an external pumping processwe may let transients decay (takestime 1=¡)
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and we are left with the steady state solution for the operator ~¾12. By setting
@~¾12=@t = 0 in the above equation we get

¾̂12 = ¡
igF ¹ B BRF C(F; 1)e¡ i! t

4¹h ¢(i [! ¡ ! 21] ¡ ¡ =2)
[¾̂22 ¡ ¾̂11]: (7.10)

This method applies to all density operators ¾̂m;m +1 , and substituting into
Eqs. (7.2b) and (7.2c) we get

Ĵy = Re

(
igF ¹ B BRF N

4¹h

F ¡ 1X

m = ¡ F

[F (F + 1) ¡ m(m + 1)] ¢ei! t

i (! m +1 ;m ¡ ! ) ¡ ¡ m +1 ;m =2
[¾̂m +1 ;m +1 ¡ ¾̂m;m ]

)

;

(7.11a)

Ĵz = Im

(
igF ¹ B BRF N

4¹h

F ¡ 1X

m = ¡ F

[F (F + 1) ¡ m(m + 1)] ¢ei! t

i (! m +1 ;m ¡ ! ) ¡ ¡ m +1 ;m =2
[¾̂m +1 ;m +1 ¡ ¾̂m;m ]

)

:

(7.11b)

These equations can be interpreted as a number (2F ) of two-level systemsthat
all interact with the driving RF-magnetic ¯eld. Two adjacent magnetic sub-
levels m and m + 1 act as one two-level atom with the usual Lorentzian response
(resonancefrequency ! m +1 ;m and line width ¡ m +1 ;m FWHM). Each two-level
system does not respond with exactly the sameweight which is re°ected in the
factor F (F + 1) ¡ m(m + 1). All the resonancesadd up coherently to give the
overall responseof the spin state to the RF-magnetic ¯eld. Note, that Ĵy and Ĵz

oscillate at the driving frequency ! and not the \natural" frequencies! m +1 ;m .
This is the steady state behavior with damped transients. In Sec.7.5 we will
comment on non-steadystate behavior of the spin system.

We conclude this section with some comments which are relevant for our
particular experimental setup. We may write the photo current of the detector
setup shown in Fig. 7.1(a) as i (t) = ®¢

D
Ĵz

E
= ®¢Imf A(t)g where® is a constant

depending on experimental parameters, and A(t) re°ects the mean value of the
curly bracket of Eq. (7.11b). We know from this equation that A(t) ´ A(! )ei! t

will possesonly a single frequency component, namely the local oscillator fre-
quency ! driving the transversespins Ĵy and Ĵz away from zero. The amplitude
of this frequency component is experimentally measuredby inserting the photo
current i (t) into a lock-in ampli¯er and decomposing the signal into sine and
cosinecomponents:

i (t) = ®¢Imf A(! )ei! t g

= ®¢(Ref A(! )gsin(! t) + Imf A(! )gcos(! t)) : (7.12)

We set the lock-ampli¯er to give the sum of the squaredamplitudes of the sine
and cosinecomponents which in our casewill be exactly ®2jA(! )j2. We shall call
this signal our magneto-optical resonance signal at frequency ! (MORS(! ) in
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short). Combining the above with Eq. (7.11b) and ignoring irrelevant constants
we ¯nd

MORS(! ) = const¢

¯
¯
¯
¯
¯
N

F ¡ 1X

m = ¡ F

[F (F + 1) ¡ m(m + 1)]
i (! m +1 ;m ¡ ! ) ¡ ¡ m +1 ;m =2

ĥ¾m +1 ;m +1 ¡ ¾̂m;m i

¯
¯
¯
¯
¯

2

:

(7.13)
We seethat the signal dependson the number of atoms N in the relevant hyper-
¯ne state F , the resonancefrequencies! m +1 ;m , the transversespin decay rates
¡ m +1 ;m , and the populations ¾̂m;m . All theseparameters are of importance for
us.

7.2 Spin State Mo deling

In the previous section we derived how the spin J responds to an external RF-
magnetic ¯eld, our motivation is to use this knowledge to characterize the spin
state, i.e. we wish to deduceparameters like ¾̂m;m , ¡ m +1 ;m and so on. Now, for
cesiumin the e.g. F = 4 hyper¯ne ground state there are nine populations ¾̂m;m

and eight line widths ¡ m +1 ;m together with the resonancefrequencies.To ¯t an
experimentally measuredspectrum (seee.g. Fig. 7.2(b)) to all theseparameters
will be very hard and in the following we will develop a model to signi¯cantly
reduce the number of free parameters. We will just tailor a model and the
justi¯cation for this model will be an experimental test.

Let us consider a casewhere we wish to orient all atomic spins along the
x-direction, i.e. attempt to put many atoms into the m = F sub-state. This can
be doneexperimentally by illuminating the atoms with circularly polarized light,
as was described in Sec.4.5. It is then convenient to de¯ne the orientation p as
an order of merit

p =
1
F

FX

¡ F

m ¢ĥ¾m;m i =
Jx

N F
: (7.14)

Note, that with this de¯nition p = 1 if all atoms are in the extreme m = F sub-
level, and p = 0 for a completely unpolarized sample with ¾̂m;m = 1=(2F + 1)
for all m. We try to let the orientation p be the only parameter describing the
relationship betweenthe nine populations ¾̂m;m . With the condition

P
¾̂m;m = 1

we have thus reducedeight free parameters to a single one.
Now, we describe ensembles of atoms and given p we will assumethat the

spin state maximizes the entropy Ŝ = ¡ Tr(¾̂ln ¾̂). To ¯nd the individual ¾̂m;m

we usethe method of Lagrangemultipliers. We must solve

@
@ĥ¾m;m i

³
S ¡ ®

X
ĥ¾m;m i ¡ ¯

X
m ¢ĥ¾m;m i

´
= 0

) ĥ¾m;m i = e¡ 1¡ ® ¢e¡ ¯ ¢m : (7.15)
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We now just needto adjust ® and ¯ in order that Tr(¾̂) = 1 and p is as desired.
Doing this is more or lessa computational problem and in principle not di±cult.
For the physical understanding we just need to remember that we can write
ĥ¾m;m i = ĥ¾F ;F i ²F ¡ m where² = ē is a parameter which is a function of p. This
can go directly into Eq. (7.13).

For the eight line widths ¡ m +1 ;m in the caseof cesiumwe will make a model
with two free parameters. First, a common line width ¡ com is assignedto all
transitions independent of m. The physical causefor this type of decay could
be magnetic ¯eld inhomogeneities,collisions, and loss mechanisms common to
all atoms. In addition, if we wish to create a well oriented sample with m ap-
proaching F we will need to illuminate the atoms with resonant circularly po-
larized light. In our casethis is the 894nm 6S1=2; F = 4 to 6P1=2; F 0 = 4 line.
This light causesexcitations from the atomic ground sub-level m with a rate
°m / j h4; m; 1; 1j4; m + 1i j2 = (4 ¡ m)(5 + m)=40, where the secondterm is the
squareof Clebsch-Gordan coe±cients. For a magnetic transition betweenground
sub-levels m and m + 1 the resonant pumping light will contribute to the line
broadening proportional to ° m + ° m +1 . Thus we de¯ne the width ¡ pump caused
by the optical pumping processsuch that

¡ m +1 ;m = ¡ com + ¡ pump
19¡ 2m ¡ m2

4
; (7.16)

where the normalization is such that for the m = 3 ! m = 4 transition we have
¡ 4;3 = ¡ com + ¡ pump .

Finally, we must have the resonant frequenciesas parameters in our model.
We will write this as a central frequency ! center and a splitting ! split such that

! m +1 ;m = ! center + ! split

µ
m +

1
2

¶
: (7.17)

From the quadratic Zeemane®ectwe should have ! split = 2¼¢º QZ (seeEq. (F.7))
but we keepit asa free parameter sincein practice this splitting will alsodepend
on the Stark shifts by the probe laser, seeSec.7.6.

To sum up, a possibledescription of the ground spin state involves the total
spin Jx and the orientation p together with the line widths ¡ com and ¡ pump , and
the frequencies! center and ! split . An equivalent but computationally easierway
to represent Jx and p is to usethe number of atoms NF = N ĥ¾F ;F i of atoms in
m = F as one parameter and the parameter ² such that the population Nm can
be expressedas Nm = N ĥ¾m;m i = NF ² (F ¡ m ) .

7.3 Exp erimen tal Test of the Mo deling

Let us make an experimental test of the magneto-optical resonancemethod and
the models discussedin Sec.7.2. To this end we setup our lasers as shown in
Fig. 7.2(a). In the following all lasers run cw. The optical pump and repump
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Figure 7.2: (a) The experimental setup for testing the magneto-optical resonance
method and the spin state modeling. In addition to the situation discussedin
Fig. 7.1(a) another linearly polarized laser(the DC-Faraday probe) is propagating
parallel to the macroscopicspin polarization createdby optical pump lasersalong
the x-axis. The MORS signal is recorded in the photo current i (t) while the
detectors D1 and D2 can tell about the polarization rotation µDC of the DC-
Faraday probe. (b) An experimental spectrum (dots) of magnetic transitions
among the nine sub-levels of the F = 4 ground state in cesium. The solid
line is a ¯t to Eq. (7.13) using the model described in Sec. 7.2. The many
peakstells us that atoms are distributed among all nine levels resulting in a low
orientation p = 0:346. The line width 9.4Hz is a direct measureof the decay
rate of spin coherence.According to Eq. (F.5) the corresponding F = 3 signal is
approximately 1kHz away and doesnot interfere here.

lasersare tuned as described in Sec.4.1 and their polarization can be adjusted
at will. The probe laser is split into two parts, onemeasuringthe transversespin
component Ĵz along the z-axis and the other one (called the DC-Faraday probe)
measuring the longitudinal, macroscopicspin component Jx along the x-axis.
The detuning of the probe laser is ¢ = ¡ 1GHz.

The rotation µDC of the DC-Faraday probe is described by Eq. (6.9) and is
directly proportional to the macroscopicspin (7.2a). The probemeasuringĴz will
leadto the MORS signalde¯ned in Eq. (7.13). An exampleof a spectrum is shown
in Fig. 7.2(b). In this casethe optical pump laser is o® and the repump laser
has elliptical polarization which is relatively far from being circular. Here we see
that there are eight peakscorresponding to the eight possibletransitions between
adjacent levels among the nine magnetic sub-levels in the F = 4 hyper¯ne state.
The dots are experimental points and the solid line is a ¯t to the model (7.13)
with Jx , p, ¡ com , ! center , and ! split asfree parameters. ¡ pump is set to zero(since
the optical pump laseris o®). Weseethat the solid line matchesthe experimental
points very well. Note, that p = 0:346 is the only parameter really describing the
relative strength of the individual peaks,while the other parametersare common
to all peaks. This givesstrong support to the model described by Eq. (7.15) with
ĥ¾m;m i = ĥ¾F ;F i ²F ¡ m . With ! = 2¼º (experimentally we prefer Hertz and not
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Figure 7.3: Two examplesof experimental (dots) and ¯tted (solid line) traces.
The left graph was obtained with pure ¾-polarized repump laser and no optical
pumping. On the right graph a small amount of optical pumping light is added
giving rise to a non-zero¡ pump . One can, with a careful look, seethat the lines
now have di®erent widths. Note also, that the height has grown by a factor of
three comparedto the graph on the left.

radians per second) the center frequency is º center ¼ 325250Hzwhich predicts
a quadratic Zeeman splitting of 23Hz according to Eq. (F.7). The observed
splitting º split = 22Hz is very close, the small deviation is due to Stark shifts
from the laser beams. For the line width we ¯nd ¡ com = 9:4Hz (FWHM). This
corresponds to a life time of the spin coherenceof T2 = 34ms, and we seethat
the experimental spectrum supports the model that all eight lines have the same
width. Finally, the ¯t to the model (7.13) also givesa value of Jx = 0:122 which
is in arbitrary units becausewe do not know the constant in front of Eq. (7.13).

Let us look at two other examples.First, with the settings asdiscussedabove
(and the optical pump laser still o®) we adjust the polarization of the repump
laser to be as circularly polarized as experimentally possible. This gives the
spectrum shown in Fig. 7.3(a). Now the spectrum is much more asymmetric and
the ¯t gives p = 0:823. This single parameter still seemsto describe the shape
with good accuracy. The third examplewe will show is seenin Fig. 7.3(b). Here
the situation is as before but now with a weak optical pump present with pure
circular polarization. We observe an additional broadening of the left most peak
by ¡ pump = 5:5Hz and we also note that the secondpeak seemsmuch broader
(should have an additional broadeningby 15.1Hzaccording to Eq. (7.16)). Since
the ¯t and the experimental points follow each other very well, we get support
for the modeling of ¡ pump . The orientation p = 0:967 shows that we are very
close to having all atoms in mF = 4 with only a moderate amount of optical
pumping light.

In the three examplesdescribed above and more spectra of the same kind
we get a ¯tted value for the macroscopicspin Jx . Now, with the DC-Faraday
rotation signal µDC giving an independent measureof Jx we may compare the
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¯tted Jx with µDC to get another consistencycheck of the model. This is shown
in Fig. 7.4(a) where we plot the ¯tted Jx (in arbitrary units) as a function of
µDC . The lowest points are taken with the repump laseronly and varying repump
polarization. The upper eight points are taken with purely circular optical pump
of increasing intensity in addition to a purely circular repump laser. We seea
very nice agreement between the ¯tted and the directly measuredvalues giving
strong support to both the derivations leading to Eq. (7.13) and the modeling of
the spin state described in Sec.7.2.

Let us concludethis sectionby noting that we developed a very simple model
describing the spin state of atoms in the presenceof optical pump and repump
lasers. The parameter ² = e¯ de¯ned in the discussionaround Eq. (7.15) is relying
on \equilibrium physics" (the derivation includes maximizing the entropy). It is
pure luck that this simple model is su±cient, our experiencetell us that a long
T1 is required to observe this. We indeed have seenbad vapour cells for which
this model doesnot hold, but this is no problem as long aswe can choosea good
vapour cell and test it. In the caseof well oriented sampleslike Fig. 7.3(b) we can
of coursenot say whether the model is good for the extreme magnetic sub-levels
around mF = ¡ 4 where the population must be exponentially small according
to the model. But in this casethe spin state is clearly de¯ned by only a few
magnetic sub-levels around mF = 4 and everything is ¯ne anyway. With these
techniques as a starting point we may turn o® the pumping lasers and we are
left with a long lived and well characterized spin state for further experimental
investigation.

7.4 Unresolv ed Lines

The spectra shown in the previous section have been more or lesswell resolved
which enabledus to directly determine the orientation p. Now, how much infor-
mation can we extract if the line widths are much broader than the quadratic
Zeemansplitting ! split ? In this caseit will be hard to observe asymmetry in the
spectrum like e.g. Figs. 7.3.

First, assumethat all atoms are subject to decoherencewith the samerate
described by ¡ com À ! split and decay from pumping light is a small contribution.
In this approximation we set ¡ pump = ! split = 0 and Eq. (7.13) reducesto

MORS(! ) = const¢

¯
¯
¯
¯2N

P
m¾̂m;m

i (! 0 ¡ ! ) + ¡ com

¯
¯
¯
¯

2

/ jJx j2 ; (7.18)

where ! 0 = ! m +1 ;m for all m. We seethat in this casethe spectrum will be
a single Lorentzian the size of which is only depending on Jx . In this casethe
independent measurefrom the DC-Faraday probe will only contribute exactly
the sameinformation and we will not be able to deducethe orientation p, e.g.we
cannot tell the di®erencebetween having N = 1012, p = 1 and N = 2 ¢1012,
p = 0:5.
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Figure 7.4: (a) Consistencycheck of the models. Fits to di®erent spectra give
an estimate of Jx . This can be compareddirectly to the independently measured
DC-Faraday rotation signal µDC which is proportional to Jx . We indeedobservea
straight line through the origin. Note, the model description ĥ¾m;m i / ²m proved
to be lessaccurate for the lowest four points, but by coincidencethe points still
¯t well. (b) The interdependenceof p, Jx and ¡ pump in the limit where ¡ pump

dominates both the common width ¡ com and the quadratic Zeeman splitting
! split . Jx; 0 and ¡ opt ;0 re°ect the values at p = 1. If we can measuree.g. Jx

independently with an accuracy of 2% the orientation can be de¯ned within 1%
in the exampleshown.

On the other hand, if ¡ pump dominates ¡ com and ! split we will get a signal
that depends on the internal atomic spin state. The reasonfor this is the fact
that di®erent resonancelines have di®erent line widths according to Eq. (7.16).
To examinethis approximation we set ¡ com = ! split = 0 and try to ¯t the rest of
the parameters to a spectrum which is a perfect Lorentzian. The correct ¯tting
parameters of coursehave p = 1 and ¡ pump equal to the Lorentzian width but
in practical life other sets of parameters will also ¯t the spectrum to an extent
which one would ¯nd reasonable.We ¯nd that orientations in the range p = 0:9
to p = 1 all ¯t the perfect Lorentzian prett y well. We now ¯x p to a value in
this range and make a ¯t of the Lorentzian. The resulting valuesof Jx and ¡ opt

are shown in Fig. 7.4(b). We seethat if we can estimate one of the parameters
Jx or ¡ opt independently we should be able to calculate the orientation p. For
instance, a measurement of Jx (by the DC-Faraday probe) to an accuracyof 2%
will ¯x the orientation p to 1%. Keeping track of the optical pump power could
lead to an estimate of ¡ opt and this could alsohelp making bondson p. One only
needsto have one ¯x point, e.g. if oneknows that we have p = 1 perfectly in one
case,or if one can reduce ¡ pump to the point where the spectral lines become
resolved and a calibration like Fig. 7.4(a) can be performed.
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7.5 Pulsed Exp erimen ts

All previous derivations and measurements in this chapter have beencarried out
in cw settings, i.e. Eqs. (7.11a) and (7.11b) assumeconstant valuesof frequency
! and decay rates ¡ m +1 ;m . This is indeed valid if lasersare running cw and if
we scan the frequency ! slowly enough. But someexperiments must be carried
out in a setting with pulsed lasers, e.g. one might wish to prepare the spin
state in the maximally oriented state F = 4, mF = 4 by illuminating atoms
by a pulse of resonant, circularly polarized laser light, seee.g. the creation of
entanglement in Chaps. 9 and 10. For the magneto-optical resonancemethod
to be useful in such experiments it must be utilized in the correct experimental
conditions which now means time varying decay rates ¡ m +1 ;m . In this section
we outline the extensionsinto the pulsed regimesand discussthe applicabilit y of
the magneto-optical resonancemethod for characterization of spin states under
thesecircumstances.

We assumefor simplicit y that atoms are pumped to the F = 4, mF = 4
state to an extent that we only needto considertransitions betweenmF = 3 and
mF = 4. The extensionto all levelsshould be straightforward (but cumbersome).
For thesetwo levels we may write Eq. (7.9) as

@~¾34

@t
= (i¢ ¡ ¡ =2)~¾34 + iÂ[¾̂44 ¡ ¾̂33]; (7.19)

where ¢ = ! ¡ ! 43 and Â = gF ¹ B BR F C(F; 3)=4¹h. We assumeas in Sec.7.1
that the populations ¾̂44 and ¾̂33 can be treated as constants corresponding to
small angle deviations from the x-axis. Then the solution of the above equation
is straightforward

~¾34(t) = ~¾34(0)e( i ¢ ¡ ¡ =2) t

¡
iÂ

i¢ ¡ ¡ =2
[¾̂44 ¡ ¾̂33]

³
1 ¡ e( i ¢ ¡ ¡ =2) t

´
:

(7.20)

This solution starts out with ~¾34(0) at t = 0 and makes a damped oscillation
toward the steady state value ¡ iÂ[¾̂44 ¡ ¾̂33]=(i¢ ¡ ¡ =2). Note, this steady state
value is exactly the result in (7.10), and it is reached in a time ¼ ¡ ¡ 1. With the
solution of ~¾34 we can continue to ¯nd the actual spin, e.g. Ĵz given by (7.2c)
and predict the results of a measurement.

Experimentally , we set up pumping lasersand a probe laser measuring the
transverse spin state as in Fig. 7.1(a). The lasers are turned on and o® with
acousto-and electro-optical modulators. The decay rate in the absenceof lasers
is denoted¡ dark which is typically small. When the probe laseris on an additional
broadening of ¡ prob e is present leading to a total decay rate of ¡ prob e + ¡ dark .
During the optical pumping pulsethe atoms are typically subject to a high decay
rate given in total by ¡ pump + ¡ dark . The probe laseris typically turned on shortly
after the optical pumping hasbeenturned o®and is maintained for a time shorter
than the decay time (¡ prob e + ¡ dark )¡ 1. We are thus in the transient regime of
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Figure 7.5: Examplesof magneto-optical resonancesignals in the pulsed regime.
In a cw experiment weestimate ¡ pump = 770Hz,¡ dark = 18Hz,and ¡ prob e = 2Hz.
The timing of pulsesis shown in the two insets, the only di®erencebetween(a)
and (b) is the pump duration being 1.0ms and 1.5ms, respectively. The thick
solid line is a simulation asdescribed in the text, the thin solid line is a measured
spectrum. The only free parameter in the simulation is the height which is
common for both ¯gures (and for all data points in Fig. 7.6 below). We de¯ne
the width and height of the traces as shown in part (a) , thesewill be discussed
in Fig. 7.6.

Eq. (7.20) and given the frequency! of the driving RF-magnetic ¯eld we cannot
obtain a simple estimate of the amplitude of the responseat that frequency as
in (7.13). Instead we have time varying quadrature components of the measured
photo current i (t) and we simply integrate theseover time in the presenceof the
probe laser. From the perspective of modeling we need to evolve ~¾34 according
to (7.20) with the relevant decay rates and integrate the result over the time of
the probe laser pulse.

We perform the pulsedexperiment and compareto simulations, experimental
examplesare shown in Fig 7.5. Given the laser powers we may from cw experi-
ments deduceparameterslike ¡ pump , ¡ dark , and ¡ prob e for usein the simulations,
and we choosethe timing of pulsesas shown in the insets of the ¯gures. Only a
common height to the simulated spectrum is a free parameter. From the ¯gures
we seethat the model and the experimental data match to a high degree,only
small details in the experimental spectra are not covered by the model. These
details are partly noiseand partly someasymmetry which arisesfrom a possible
non-perfect orientation and from the fact that the optical pump lasercontributes
a small Stark shift. The structure consistsof a central peakwhich is dominant at
short pump durations Tpump . We observe small sidebandswith separation 67Hz
= T ¡ 1

pump which increasein magnitude for longer pump durations. For very large
Tpump we end up with a single, broad structure. As we show in Fig. 7.5(a) we
de¯ne a height and width for the simulated and measuredspectra. These are
comparedin Fig. 7.6, we seethere is a very nice agreement for a longer range of
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Figure 7.6: Comparison of heights and widths of the simulated and measured
magneto-opticalspectra, seeFig. 7.5. Wehave¡ pump ¼ 770Hzwhich corresponds
to a characteristic time around a millisecond. We seethat for Tpump ¸ 2msthere
is essentially no changein the height and width of the spectrum, the steady state
value of Eq. (7.20) has beenreached with the strong ¡ pump .

pump durations than the two shown in Fig. 7.5.
We do in general¯nd good agreement with simulated and measuredspectra.

As another observation, wewill state that with a good approximation the width of
the pulsed spectrum grows proportionally with ¡ pump if we just to a reasonable
extent have ¡ dark + ¡ prob ¿ ¡ pump ¿ T ¡ 1

prob e. In addition, we may show by
dimensional arguments that (for ¯xed orientation) the area A of the spectrum is
connectedto the width ¡ and to the macroscopicspin Jx by A = const¢J 2

x =¡.
In the experiment discussedin Sec.10.1 this was partially usedto estimate Jx .

7.6 Stark Shifts by the Prob e

We concludethis chapter with a study of the in°uence of the Stark e®ectfrom the
probe laseron the magneto-optical resonancelines. There are several motivations
for this. Firstly , this is a direct experimental test of the higher order terms
(proportional to a2) in the interaction Hamiltonian (5.18), and secondly, we will
get someunderstanding related to the fact that the laserbeamdoesnot cover all
atoms at the sametime. Finally, someexperimental diagnostics can be applied
from the Stark e®ect.

Let uscalculate the Stark e®ectfrom the probe laseron the magneticsublevels
jF; mi . We let the light be strong and linearly polarized along the vector

e1 = ex cos®+ ey sin®; (7.21)

i.e. ® is the angle between the macroscopicspin direction (the x-axis) and the
probe polarization direction. The Stark e®ecton magnetic sub-levels is in our
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casemuch weaker than the splitting causedby the constant magnetic ¯eld and
can be calculated in non-degenerateperturbation theory from the interaction
Hamiltonian (5.18). The a0 term is common to all levels, the a1 term is zero

on averagesince
D

Ŝz

E
= 0, and we are left with the higher order components

proportional to a2. For the linearly polarized probe we may show that

D
Ŝ+ (t)

E
=

Á(t)
2

e2i® and
D

Ŝ¡ (t)
E

=
Á(t)

2
e¡ 2i® ; (7.22)

whereÁ(t) is the photon °ux and Stokesoperators are normalized to photons per
second. Then the higher order terms of the interaction Hamiltonian for a single
atom can then be written

Ĥ e®
in t = ¡

¹h°
4A¢

¸ 2

2¼
a2 ¢Á(t) ¢

¡
|̂ 2
z ¡ [|̂ 2

x ¡ |̂ 2
y ] cos(2®) ¡ [|̂ x |̂ y + |̂ y |̂ x ] sin(2®)

¢
:

(7.23)

Now, in the basisquantized along the x-axis we may easily derive

hmj |̂ 2
x jmi = m2;

hmj |̂ 2
y jmi =

F (F + 1) ¡ m2

2
;

hmj |̂ 2
z jmi =

F (F + 1) ¡ m2

2
;

hmj |̂ x |̂ y + |̂ y |̂ x jmi = 0:

(7.24)

We can now calculate in perturbation theory the contribution of the Stark shift
to the energy levels from the above Hamiltonian.

E Stark
m =

¹h°
4A¢

¸ 2

2¼
a2 ¢Á(t) ¢

·
1 + 3cos(2®)

2
¢m2 ¡

1 + cos(2®)
2

F (F + 1)
¸

: (7.25)

Comparing to the quadratic Zeemane®ectof App. F we easily derive that the
Stark e®ectcausesan additional splitting between two resonancelines of the
magneto-optical resonancesignal of

º Stark [Hz] = ¡
° ¸ 2a2

16¼2A¢
¢Á(t) ¢[1 + 3cos(2®)]

= 1:03¢106Hz
P[mW] ¢a2(¢) ¢[1 + 3cos(2®)]

A[cm2] ¢¢ blue [MHz]
;

(7.26)

where we inserted ° = 5:21MHz and ¸ = 852nm, and we related the °ux Á(t)
to the probe power P. a2 was de¯ned in Eq. (5.16). We remark that we have
here presented an alternativ e calculation of Eq. (6.24). The additional factor
(2F ¡ 1)¾j x =2 arisesfrom the fact that in Eq. (6.24) we calculated the shift of
the outermost resonancelines m = F $ m = F ¡ 1 or m = ¡ F $ m = ¡ F + 1.



64 Chapter 7 - Atomic St ate Chara cteriza tion

D = 1000MHz
= 2.21mWP

S
ta

rk
 s

pl
itt

in
g 

[H
z]

20

15

10

5

0

-5

-10

-15

-20

Polarization angle ( [deg]a)
-40 -20 0 20 40 60 80 100 120

y = C
C

[1+3cos(2 [ - ]/180 )]
= 4.35(2)
= 4.7(2)

p a a

a

0

0

o

S
ta

rk
 s

pl
itt

in
g/

P
ow

er
 [H

z/
m

W
]

10

1

y = Ca
C

2/
= 6.80(4)*10

D
5

500 1000 1500 2000 2500 3000
Blue detuning (- [MHz]D)

a = 0deg

(a) (b)

Figure 7.7: (a) The Stark splitting º Stark versuspolarization direction ®. The
dots are experimental and the solid line a ¯t. We con¯rm the 1 + 3cos(2®)
dependencepredicted by Eq. (7.26). The ¯tted constant C can be compared
quantitativ ely with the theory, seethe text for details. (b) The Stark splitting
per milliw att of probe power º Stark =P versusblue detuning (¡ ¢). Again there is
agreement with theory, we con¯rm the dependenceon a2=¢. The small deviation
at low detuning can be explained by Doppler broadening.

The Stark splitting can be measuredwith high precision by magneto-optical
resonancesignalslike the exampleshown in Fig. 7.2(b). From the experimentally
measuredsplitting we subtract the quadratic Zeemancontribution (F.7) º QZ =
23:0Hz to obtain the Stark contribution º Stark .

We set up an experiment to measureMORS for di®erent valuesof the angle
®, the probe power P, the detuning ¢, and the beam crosssection A. First of
all, we ¯nd that the Stark splitting is independent on the beam cross section
A. The reason for this is the fact that atoms are moving in and out of the
laser beam. For a constant power P all atoms seethe sameaveragenumber of
photons independent on A. We also con¯rm experimentally that the splitting is
proportional to the power P.

Next, we examine the dependenceon the angle ®. The results is shown in
Fig. 7.7(a). We make a ¯t to Eq. (7.26) with an overall constant C and an
o®setangle ®0 as only free parameters. We ¯nd an o®set®0 = 4:7deg which
we take as a mis-calibration of the polarization direction ®. The experimental
uncertainty in ® is about one degree. We also ¯nd that the dependenceon
(1 + 3cos(2®)) is con¯rmed, and the constant C matches the prediction (7.26)
if we take A = 5:8cm2. This is very closeto the e®ective transversearea of our
vapour cell Ae® ¼ 6:0cm2 which we mentioned in Sec.4.2.

We also examine the dependenceof the Stark splitting on the blue detuning
(¡ ¢). To obtain a higher precision we take several points with di®erent probe
powers P. We plot the measuredsplitting versusprobe power and make a linear
¯t to the data. This results in a slope º Stark =P which is plotted in Fig. 7.7(b).
This is ¯tted to the model y = Ca2=¢ blue and we seethat the data and the solid
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line ¯t match very well. A small disagreement for low detuning is probably a
result of the Doppler broadening. We ¯nd agreement with Eq. (7.26) if we take
A = 6:1cm2. Again there is good agreement with an e®ective area of 6.0cm2.

We conclude that our predictions match very well with experiments, both
qualitativ ely and quantitativ ely. Thus we have con¯dence that the Hamilto-
nian (5.18) is correct. We also learn that the atomic motion can be modeled
by an e®ective transverse area Ae® = 6:0cm2 of the vapour cell (at least for
classicalmean values). Finally, we saw that the measurements could indicate a
mis-calibration of the polarization angle ®. Also, by comparing the Stark split-
ting for two atomic sampleswe have the possibility to measurethe light loss in
the propagation between the samples(we cannot place power meters inside the
vapour cells).
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CHAPTER 8

Recording Quan tum Fluctuations
of Ligh t in A toms

In this chapter we examine the interaction betweenatomic spins and the polar-
ization state of light at the quantum level. Our motivation for this is two fold.
First of all, we would like someevidencethat the theory described in Chaps. 5
and 6 leadsto correct predictions for experimental results. In the present chapter
we take the basicequationsof interaction (6.11-6.14)asour starting point. With
these at hand, we develop an understanding of the dynamical evolution of the
quantum spin state in the presenceof a laserbeamin a non-classicalpolarization
state. We will ¯nd convincing agreement between theory and experiment. Sec-
ondly, the experimental results demonstrate that our atomic spin states indeed
are sensitive to the quantum °uctuations of a light beam. This is one necessary
step toward the realization of a full scalequantum memory for light basedon
back action of quantum measurements. Wediscussthis morecarefully in Secs.8.5
and 11.3.

Other approaches toward a quantum memory for light exist. With the aid
of electromagnetically induced transparency, the amplitudes of an electric ¯eld
can be mapped onto coherencesof atomic ground state spins [30]. This has been
demonstrated experimentally in [31, 32, 33] for classicalmean values of ampli-
tudes and phase. Theoretically this should also work for quantum °uctuations.

The contents of the present chapter are published in [I I,VI I]. The work of the
present chapter alsoshedslight on the ultimate sensitivity of spin measurements.
This is discussedin [I I I,V].

A schematic view of the experiment is shown in Fig. 8.1. An atomic sample



68 Chapter 8 - Recording Quantum Fluctua tions

x

y

z

-

Probe laser

l/2

Optical pump and
repump lasers

s+
Coh.       

Sq.

Spectrum
analyzer

B bias

i (t)

Figure 8.1: Schematic view of the experimental setup. A probe laser is sent
through a sampleof oriented atoms. The optical and repump laser maintain the
spin orientation. A detection systemmeasuresthe °uctuations of the light leaving
the atomic sample. A constant magnetic ¯eld B bias moves atomic °uctuations
to the Larmor frequency ­.

is placed in a constant magnetic ¯eld B bias and the atomic spins are oriented
parallel to this magnetic ¯eld along the x-axis. The spinswill rotate with Larmor
frequency­ = gF ¹ B Bbias =¹h (seeApp. F). The spin orientation is maintained by
the optical pump and repump laserswhich are running cw. The optical pump and
repump power can be adjusted, especially the resonant optical pump laser will
causedecay of the spin state with a rate ¡ depending on laser power. The probe
laser emergesfrom a source that will be described in Sec. 8.2. The quantum
polarization state of the probe laser can be coherent or squeezed. The probe
laser passesthe atoms and exchanges quantum °uctuations with these. The
outgoing laser beam is measuredby a detection system, and the photo current
i (t) /

D
Ŝout

y (t)
E

(seeEq. (E.1)) is fed into a spectrum analyzer. Our goal is to

predict the spectrum of i (t) and connect this to the quantum variables of the
atomic spins and the polarization state of the probe laser.

8.1 Theoretical Approac h

We write up Eqs. (6.11-6.14) with the addition of the Larmor rotation and the
spin decoherence.This reads

Ŝout
y (t) = Ŝin

y (t) + aSx Ĵz (t); (8.1)

Ŝout
z (t) = Ŝin

z (t); (8.2)

@
@t

Ĵy (t) = ¡ ­ Ĵz (t) ¡ ¡ Ĵy (t) + F̂ y (t) + aJx Ŝz (t); (8.3)

@
@t

Ĵz (t) = ­ Ĵy (t) ¡ ¡ Ĵz (t) + F̂ z (t): (8.4)

The magnetic ¯eld adds the term ¹h­ Ĵx to the Hamiltonian which leads to the
¯rst terms of Eqs. (8.3) and (8.4). The decoherenceof the spin variables is put in
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by hand with a decay rate ¡. This decay term must be accompaniedby Langevin
forces F̂ y and F̂ z to preserve the correct quantum statistics. The properties of
theseLangevin forcesare calculated in App. G.

The above equations are conveniently solved in Fourier space. In addition,
with the knowledge of the correlation function

D
Ŝout

y (! )Ŝout
y (¡ ! 0)

E
we may

directly deduce the spectrum of °uctuations of the photo current de¯ned by
©(! ) = 1=

p
2¼

R
hi (t)i (t + ¿)i ei! ¿d¿. We will ¯nd mathematically

Á(! ) ¢±(! ¡ ! 0) /
D

Ŝout
y (! )Ŝout

y (¡ ! 0)
E

+
D

Ŝout
y (¡ ! )Ŝout

y (! 0)
E

: (8.5)

This is essentially the Wiener-Khintchine theorem [86], for more details see
App. E. We de¯ne the Fourier transform by Ŝout

y (! ) = 1p
2¼

R
Ŝout

y (t)ei! t dt and
with somealgebra the above equations turn into

Ŝout
y (! ) = Ŝin

y (! ) + aSx Ĵz (! ); (8.6)

Ŝout
z (! ) = Ŝin

z (! ); (8.7)

Ĵy (! ) =
(¡ ¡ i! )F̂ y (! ) ¡ ­ F̂ z (! ) + (¡ ¡ i! )aJx Ŝin

z (! )
(­ ¡ ! )(­ + ! ) ¡ 2i ¡ ! + ¡ 2 ; (8.8)

Ĵz (! ) =
­ F̂ y (! ) + (¡ ¡ i! )F̂ z (! ) + ­ aJx Ŝin

z (! )
(­ ¡ ! )(­ + ! ) ¡ 2i ¡ ! + ¡ 2 : (8.9)

Inserting (8.9) into (8.6) gives the Fourier components of the outgoing Ŝy oper-

ator. We need to calculate the correlation function
D

Ŝout
y (! )Ŝout

y (¡ ! 0)
E

and to

this end we need the correlation functions of the Langevin forces F̂ y , F̂ z , and
the Stokesoperators Ŝin

y , Ŝin
z . The Stokesoperators are discussedin App. E, the

Fourier transform of Eqs. (E.10) and (E.11) yields

D
Ŝin

y (! )Ŝin
y (¡ ! 0)

E
= ²y

Sx

2
±(! ¡ ! 0);

D
Ŝin

z (! )Ŝin
z (¡ ! 0)

E
= ²z

Sx

2
±(! ¡ ! 0);

(8.10)

where we have intro duced the squeezingparameters ²y and ²z such that ²y =
²z = 1 for the input light in the coherent state (classical laser light) and ²y < 1
or ²z > 1 for light with squeezedŜy -component or vice versa. The Heisenberg
uncertainty relation requires ²y ¢²z ¸ 1. The ²-parameters measurethe noise
level of the Stokes components relative to the level with coherent state light.
Physically, the delta function ±(! ¡ ! 0) times the constant Sx =2 gives the light
noisea white power spectrum which grows proportionally to the °ux of photons.

The Langevin forcesare derived in App. G, Fourier transforming Eq. (G.6)
yields D

F̂ y (! )F̂ y (¡ ! 0)
E

=
D

F̂ z (! )F̂ z (¡ ! 0)
E

= ¡ jJx j±(! ¡ ! 0); (8.11)
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where ¡ is the spin decay rate intro duced in Eqs. (8.3) and (8.4), and jJx j is the
magnitude of the macroscopicspin state along x. There are also non-zerocross
correlations like

D
F̂ y F̂ z

E
which are all delta-correlated as the direct terms.

Now, from Eqs. (8.6) and (8.9) we note that (apart from c-numbers) Ŝout
y (! )

only dependson the quantum variables Ŝin
y (! ), Ŝin

z (! ), F̂ y (! ), and F̂ z (! ). Since
all these have correlation function proportional to ±(! ¡ ! 0) it follows that this
is the casefor Ŝout

y (! ). From Eq. (8.5) and somelengthy but simple algebra we
derive the spectrum ©(! ) of the photo current i (t). Leaving out irrelevant front
factors we get

©(! ) =
Sx

2
²y +

1
4 a2S2

x

(­ ¡ ! )2 + ¡ 2

½
a2J 2

x Sx ²z

2
+ 2¡ jJx j

¾
+ neg. freq. (8.12)

We have made the narrow band approximation ¡ ¿ ­ and j­ ¡ ! j ¿ ­ which
clari¯es the resonant structure of the power spectrum around ­ with width ¡.
There is also a similar negative frequency component around ¡ ­. The cross
correlations of the Langevin forcesand Stokesoperators do not contribute here,
this is a result of the special form of Eq. (8.5) which again is a result of time-
ordered light ¯eld operators (seeApp. E).

The spectrum (8.12) is very intuitiv e. The ¯rst term is the noise of the
incoming light, it has a white spectrum and is proportional to the photon °ux.
For ²y = 1 weareat the shot noise level (SNL). The secondterm hasa Lorentzian
pro¯le centered at the Larmor frequency ­ with line width ¡ (HWHM). This
corresponds to the slow time dynamics of the spin state evolution being of order
¡ ¡ 1. The ¯rst term inside the curly brackets is called back action noise, it is a
result of the quantum °uctuations of light being stored in the spin state. The
last terms in the curly brackets is the projection noiseof the spin state.

To ¯nd a convenient way to comparetheoretical predictions with measurement
we integrate the power spectrum over frequencies.Wede¯ne the backaction noise
area and the projection noise area by

BANA ² z =
¼a4J 2

x ²z

¡

µ
Sx

2

¶ 3

; PNA = 2¼a2jJx j
µ

Sx

2

¶ 2

; (8.13)

i.e. the integral over the ¯rst and secondnarrow band term in the curly brackets
in (8.12). We note that the BANA scaleswith the photon °ux to the third power,
with J 2

x , and inverselywith ¡. The PNA scaleslinearly with the spin sizeJx , this
is the usual ¯nger print of quantum noiseimposedby the Heisenberg uncertainty
principle. Note alsothe quadratic scalingwith photon °ux and the independence
of the width ¡, projection noisecannot be washedaway by decay processes.The
shot noise level SNL = Sx =2 connects the BANA 1 (with coherent state light,
²y = ²z = 1) and the PNA in the following way

PNA = 2
p

¼¡(BANA 1) £ (SNL): (8.14)

We may denote the area of additional noise contributions to the atomic noise
as technical noise area TNA. Technical noise(from e.g. lasersor radio stations)
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Figure 8.2: (a) A pictorial description of di®erent noisecontributions. The shot
noiseof light hasa white spectrum and is represented by the °at dotted line. The
narrow band contribution is divided in to three terms, the back action noise,the
projection noise, and the technical noise (see text for more details). The back
action contribution (shadedwith gray scale)can be consideredas the \memory
part" of the atoms. (b) An example of a measuredspectrum. The solid line
is obtained with the input light in a vacuum state (²y = ²z = 1). When the
input mode is in a squeezedstate (dashed line) the Lorentzian part from atoms
increaseswhile the wings decrease.The peak on the right is technical noise. In
the experiment ­ = 325kHz.

can scalein di®erent ways, but an important fact is that external sourceswill be
common to all atoms in the sample. As a consequencethe TNA will scaleas J 2

x .

The di®erent kinds of noise are illustrated in Fig. 8.2(a). On top of the
°at shot noiselevel (SNL) are the narrow band contributions PNA, BANA, and
TNA. These three contributions add up to one joint Lorentzian structure, in
Fig. 8.2(b) we show two experimental spectra of this kind. The solid line is taken
with coherent state probe (²y = ²z = 1). The dashedline di®ersfrom the solid
line solely by a changedquantum state of the input light, we have squeezedŜy

such that ²y < 1 and ²z > 1. We note the reduction in the baseline according
to the ¯rst term in Eq. (8.12), and we seethat the Lorentzian peak has become
larger causedby the extra noisein the anti-squeezedcomponent Ŝz , seeEq. (8.13)
for BANA. We wish to single out the individual contributions PNA, BANA,
and TNA from experimental measurements. To this end we may ¯t the narrow
structures of Fig. 8.2(b) by a Lorentzian shaped function obtaining the total
narrow band noisearea. In the caseof coherent probe (solid line in Fig. 8.2(b))
we denote the area ACOH and in the caseof a squeezedprobe (dashed line in
Fig. 8.2(b)) we get the area ASQ . We must have

ACOH ´ BANA 1 + PNA + TNA ; ASQ ´ BANA 1 ¢²z + PNA + TNA ; (8.15)
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Figure 8.3: The experimental setup. A Ti:sapphire laser is frequency doubled
in a secondharmonic generator and down-converted in an optical parametric
oscillator to give the quantum ¯eld ây . This ¯eld is mixed with a strong ¯eld
Ax derived from the sameTi-sapphire laser to obtain non-classicalpolarization
states of Ŝy and Ŝz , seeEq. (A.14). This light is sent through an atomic cesium
ensemble. The light polarization and the atomic spin state exchange quantum
°uctuations, and the resulting laser beam is measuredat a polarization state
analyzer. The di®erent lasersusedin the experiment are depicted in the inset.

and we can solve this to obtain the experimental values

BANA 1 =
ASQ ¡ ACOH

²z ¡ 1
; PNA + TNA =

²zACOH ¡ ASQ

²z ¡ 1
: (8.16)

The shot noise level (SNL) and the squeezingparameters ²y , ²z are easy to
accessby measuring noise of light without atoms. The PNA can be estimated
from Eq. (8.14) and we have thus separatedall di®erent noisecontributions.

8.2 Exp erimen tal Setup

The experimental setup for the study of quantum °uctuation exchangebetween
atoms and light is shown in Fig. 8.3. The light incident on atoms described by
quantum variables Ŝin

y and Ŝin
z is engineeredby overlapping a strong x-polarized

beam of light with amplitude âx (t) ¼ Ax and a quantum ¯eld linearly polarized
along the y-axis with amplitude ây (t) on a polarizing beam splitter. The latter
is generated by frequency doubling a ti:sapphire laser and subsequent down-
conversion in an optical parametric oscillator (OPO) below threshold. This pro-
cessis not a part of my thesiswork, we refer to [37, 60] for details. The important
fact is that the OPO generatessqueezedvacuum which is characterized by noise
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reduction (below the standard quantum limit of classical light) in either of the
quadrature amplitudes x̂(t) = (ây (t) + ây

y (t))=
p

2 or p̂(t) = (ây (t) ¡ ây
y (t))=i

p
2

while the other getsmore noisy. This correspondsexactly to the caseintro duced
in Chap. 2 around Eqs. (2.10) and (2.11), we stress that the quantum °uctua-
tions of the polarization state of light is entirely given by the quantum state of
the y-polarized mode emergingfrom the OPO.

The ti:sapphire laser is blue detuned by ¢ = ¡ 875MHz from the D2 line
and the strong x-polarized beam has power up to 5mW limited by saturation
of our Sy detectors. The noise level in the squeezedvacuum is -4.5dB in the
quiet quadrature and 8.0dB in the noisy quadrature both relative to the classical
noise level. However due to propagation losses,non perfect detection, ¯nite
beam overlap and weakly birefringent optics after the PBS only about -3.0dB
squeezingand 7.0dB excessnoise is left at the detection. For squeezingof Ŝy

this corresponds to ²y = 0:5 and ²z = 5:0. The bandwidth of squeezingis
8.0MHz HWHM and consequently we can consider our polarization squeezed
probe broadband relative to the atomic spin noiseresonancewhich hasa width of
no more than 1kHz FWHM (this wasassumedin App. E leadingto the theoretical
Eqs. (8.10)).

The laser beam now passesthrough the atomic cesium sample which has
macroscopicangular momentum Jx created by the repump and optical pump
lasers, seeSec.4.1. Both lasersare circularly polarized with the samehelicity.
By adjusting the relative power of the laserswe are able to control the number
of atoms in the F = 4 ground state. The decay rate ¡ is almost only set by the
optical pumping laser which is resonant with atoms in F = 4. The degreeof
spin polarization (better than 95%) and the number of atoms is measuredby the
magneto-optical resonancemethod described in Chap. 7.

The output Stokes parameter Ŝy is measuredby a polarizing beam splitter.
The power spectrum of the photo current i (t) is recordedin a frequencywindow
varying from 1.6kHz to 3.2kHz around ­. The resulting spectrum is a narrow
Lorentzian centered at ­ = 325kHzwith a width ¡ in the rangeof 100Hzto 1kHz
FWHM.

8.3 Exp erimen tal In vestigation of the Mo del

Now, let us investigate our theoretical model in detail. First of all, the shape of
the experimental traces in Fig. 8.2(b) resembles the theoretical prediction (8.12),
there is a Lorentzian structure on top of a °at noise level. The °at back ground
level is observed to rise or fall with respect to the shot noise level when Ŝy

is anti-squeezedor squeezed,respectively. We also observe an increaseof the
Lorentzian peak when Ŝy is squeezedand Ŝz is anti-squeezed,seeFig. 8.2(b).
The opposite examplewith squeezedŜz hasonly led to a very marginal decrease
of the Lorentzian peak size. First of all, the e®ectis ten times lesspronounced
(²z = 0:5 instead of ²z = 5:0). Just as important is technical di±culties with
phase locking the strong x-polarized beam and the y-polarized quantum ¯eld
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Figure 8.4: The back action noise area BANA as a function of probe power on
log-log scale (a) . The probe power is proportional to Sx . Varying the probe
power will causeslight changesto the number of atoms N and the line width
¡. This is taken care of by plotting BANA ¢¡ =N 2 on the ordinate axis. We see
the data is consistent with BANA / S3

x . (b) The projection noise area derived
from (8.14). The data is, in fact, compiled from two serieswith di®erent ¡'s,
giving strong quantitativ e support of the model.

in the caseof Ŝy -anti-squeezing. With the qualitativ e con¯rmation of the spec-
trum (8.12), we now turn to a more quantitativ e comparisonbetweentheoretical
predictions (8.13, 8.14) with experimental results. First, we try to vary the probe
power (i.e. to vary Sx ). This will have a slight in°uence on the number of atoms,
i.e. on Jx , and some in°uence on ¡ due to power broadening. From (8.13) we
expect BANA ¢¡ =N 2 to be proportional to S3

x . This is indeed con¯rmed exper-
imentally , seeFig. 8.4(a). We also wish to con¯rm that BANA scaleswith J 2

x
and that the predicted projection noisearea PNA scaleslinearly with Jx , given
by Eqs. (8.13). Note, these two scaling relations are equivalent sincewe predict
the PNA from the BANA and the shot noiselevel. The experimental results are
shown in Fig. 8.4(b). We again con¯rm the predicted scaling, and in addition,
the constant of proportionalit y is consistent for di®erent valuesof ¡.

Finally, let us examine the BANA as a function of ¡. The line width ¡
is controlled by increasing the power of the optical pump laser. Doing this only
a®ectsthe macroscopicspin weakly, and wecandirectly examinethe scaling. This
is done in Fig. 8.5(a), wherewe clearly seethe correct scalingwith ¡ ¡ 1. We may
also consider the noisenot originating from the back action e®ect.This residual
noise area (abbreviated RSN) given by the projection noise plus the technical
noise(PNA + TNA, seeEq. (8.16)) is plotted together with the predicted PNA
in Fig. 8.5(b). We seethat the RSN decreaseswith increasing ¡ and seemsto
approach the PNA. The physical interpretation is simple. The technical noise
picked up from someunknown source can be reduced by increasing the power
of the optical pump laser. This will exactly destroy the spin state created by
technical noiseand push the spin toward the coherent spin state. The coherent
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Figure 8.5: (a) The measuredback action noise area (BANA) for the vacuum
light input as a function of decay rate ¡ on a log-log scale. (b) The measured
residual spin noise(RSN) and the inferred projection noisearea(PNA) calculated
from (8.13).

spin state has an inherent quantum noise(the PNA) which can by no meansbe
reduced. Thus we seein Fig. 8.5(b) that the PNA is independent on ¡, and that
the residual noisewill not decreasebelow the PNA.

In Fig. 8.5(a) we also see,that the back action noise BANA can indeed be
reduced in the same way as technical noise. Back action noise is a pile up of
quantum noise from the probe laser and the optical pump will clear up this
again. The stronger the optical pump, the lesserpiling up of back action noise
(and technical noise).

A comment should be added to Fig. 8.5(b). Theoretically, the RSN should
really convergeto the PNA in the limit of large ¡ if our understanding is correct.
Experimentally , we could not go further than ¡ = 1kHz, but even so one may
still suspect that the RSN is converging to a slightly higher value. There could
be several reasonsfor this, e.g. non-perfect orientation of the spin, higher order
e®ectsdiscussedin Sec. 6.4, e®ectsof beam geometry, etc. We do not have
experimental data suggestingwhich of these e®ects(if any) play an important
role heresowe will not dig further into that. But this doesnot changethe overall
impressionof the results. There is a very good agreement betweenthe theoretical
predictions and the experimental data, and we have a good understanding of the
various noisesources.All together the Faraday e®ecthas beenstudied in detail
and found to agreewith the theory on the level of quantum °uctuations.

8.4 Broadband A tomic Noise

For completeness,in this section we will brie°y discusssomebroad band noise
which has been observed in addition to the narrow band structure given by
Eq. (8.12). ConsiderFig. 8.6(a) which shows a noisespectrum similar to the one
in Fig. 8.2(b). Here we seethe recorded signal in presenceof atoms and in the



76 Chapter 8 - Recording Quantum Fluctua tions

7

6

5

4

3

2

1

0
0 500 1000 1500

Frequency [Hz]

N
oi

se
 s

pe
ct

ra
l d

en
si

ty
 [m

V
/H

z]
rm

s2

Peak height to shot noise level

W
hi

te
 a

to
m

ic
 n

oi
se

 to
 s

ho
t n

oi
se

 le
ve

l

1.0

0.1

1 10 100

P
ea

k 
he

ig
ht

W
hi

te
at

om
ic

no
is

e

S
ho

t n
oi

se
le

ve
l

4mm
6mm
8mm
10mm

Beam diameter

(b)(a)

Figure 8.6: (a) An example of the recordedspectrum with atoms (upper trace)
and without atoms (lower trace). We seethat in the casewith atoms we have
somewhite atomic noise on top of the shot noise level. The frequency is relative
to the demodulation frequencyat 325kHz. (b) Plotted is the white atomic noise
level as a function of the peak height of the narrow structure (seepart (a) of the
¯gure), note the log-log scale. The noiselevelsare normalized to shot noise. The
probe power and beam sizeare varied in this experiment. Seetext for details.

absenceof atoms. The important fact is that the °at background is higher than
the shot noise level in presenceof atoms, i.e. the atoms contribute somebroad
band noisewhich we denotewhite atomic noise (white sinceit seemsto be quite
broad band).

In Fig. 8.6(b) this white atomic noiseis plotted versusthe peak height of the
narrow band atomic noise (both normalized to the shot noise level) where we
for di®erent beam sizesvary the probe power. The beam size is controlled by
clipping a large beam with an iris. The fact that Fig. 8.6(b) reveals a linear
dependence(slope closeto unit y on log-log scale)just tells that when the narrow
atomic noiseincreasesthe white noisepart increasesin the sameway, the increase
is herecausedby variations in the probe power. We have not extensively studied
the white noise dependenceon various parameters but we do have indications
that it scaleslinearly with number of atoms and quadratically with the probe
power. What is also clearly seenfrom the ¯gure is the fact that the white noise
seemsto contribute more for a smaller beam size. The reasonfor plotting the
white noise as a function of the peak height (a property of the narrow noise) is
that we exclude the growth of the white noise to be causedby a simple overall
growth in noise. We explicitly seethat the fraction of white noiseincreaseswith
decreasingprobe diameter.

To understand the white atomic noisewe needto carry out more experiments,
it could be interesting to know the bandwidth of this noisebut bandwidth limi-
tations of detectorsand electronicsexcludeus from doing this in an easyfashion.
But we certainly have su±cient information to start speculating on the reason
for the white noise. One should remember that broad band noise corresponds
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to fast decoherencetimes, if the white noisecontribution is relatively large there
are relatively many atoms which live for a very short time or which are only
measuredfor a very short time. Sincethe white noisecontribution is largest for
small beam sizeswe proposethat it is causedby atoms which have spent little
time inside the volume illuminated by probe light. If an atom traversesa beam
of 5mm diameter with a typical speedof 137m/s (seeSec.4.2) the time duration
will be of order 37¹ s corresponding to a typical frequency bandwidth of order
27kHz which is broad band with our typical frequency scales.The narrow peak
would then be causedby atoms which have had several opportunities to enter
and leave the region illuminated by the probe laser. We stress that this expla-
nation would gain more con¯dence with more experiments. In the experiments
reported in previous sectionsa Gaussianbeam with waist 5.1mm was used. The
white atomic noise was observable but all results were concentrating solely on
the narrow part of the atomic noise.

8.5 Discussion of the Results

Let us summarize and discuss the results of this chapter. We started out in
Sec.8.1 with the basicequationsof interaction (6.11-6.14)and developed a model
to describe the particular experimental setupof a polarized laserbeaminteracting
with a sampleof polarized spins. The theoretical predictions were demonstrated
experimentally and we concludethat we understand the light/matter interaction
in detail, this includes the exchange of quantum °uctuations between light and
matter.

The fact that the y-polarized mode could be illuminated with squeezedvac-
uum demonstrated the sensitivity of the spin state to a quantum ¯eld of light.
The atoms responded to this light in a way which was not much weaker than
e.g. uninteresting technical noise sources,the clear di®erencebetween the two
Lorentzians in Fig. 8.2(b) is solelydue to the quantum statistics of the y-polarized
mode emergingfrom the squeezingsource(the OPO). In fact, for our speci¯c val-
uesof the gain of the OPO the y-polarized ¯eld contains about one photon per
secondper Hz of the bandwidth [60]. The atoms measuredin Fig. 8.2(b) are
only sensitive to frequencycomponents of light in a width ¡ = 200Hz. Thus the
di®erencebetween the solid an dashedline in this caseis the absence/presence
of about 200 photons/sec. The atoms have a characteristic memory time of the
order ¡ ¡ 1 which meansthat on the time scaleof the spin life time the atoms have
been in°uenced by roughly one photon. This de¯nitely underlines the quantum
sensitivity of the interaction. We note that the measuring and averaging time
necessaryto createthe two Lorentzians in Fig. 8.2(b) is much more than onespin
life time but the di®erenceof atomic state is the presenceof a single photon per
spin decoherencetime.

If we direct the discussiontoward the outlook for a future implementation
of quantum memory we need to understand what interesting properties of the
quantum ¯eld can be stored. First of all, for a real quantum memory we needto
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Figure 8.7: (a) A possible scenario for storing details about a light pulse. A
rotating mirror will direct a laserbeamto di®erent storagecellsthereby recording
di®erent time bins of the pulse. This is further illustrated in (b) , the interaction
is on whenSx is high (symbolized by the dashedline). The evolution of Ŝz is then
sampled at di®erent times. (c) The samein Fourier space,di®erent frequency
components are recordedin each cell sincethe magnetic ¯eld varies.

store the properties of non-commuting variables. For instance, for a pulseof light
with polarization state described by the variablesŜy and Ŝz it is desirableto map
Ŝy ! Ĵy and Ŝz ! Ĵz . This is not what we demonstrate in the present chapter.
Weshow how the Ŝz -component of light pilesup in the atomic spin state. Starting
out with the light ¯eld in a squeezedstate should lead to atomic spins ending
up in a squeezedstate in order to call the exchange of quantum °uctuations a
complete quantum map. A protocol for performing the full quantum map will
be discussedin Chap. 11.

In addition to the above discussionwe also note, that the atoms are only
sensitive to °uctuations around the Larmor frequency ­ in the bandwidth ¡.
For storage of the state of light in atoms it is desirable to have a long memory
time and accordingly a small ¡. Hence we can only store a single frequency
component of a light pulse in a single atomic sample, or in other words, if the
Larmor frequency is zero we only store the average value of Ŝz over the light
pulse. To store more detailed time dynamics of a light pulse we could imagine a
setup as depicted in Fig. 8.7(a). Chopping a long pulse into smaller piecesand
storing each piecein a separateatomic sampleaccomplishessometime resolution.
In a classicalpicture as in Fig. 8.7(b) this corresponds to sampling the value of
Ŝz at di®erent times. But this must be equivalent to sampling di®erent frequency
components of light, we could chooseto shine the light through several atomic
sampleseach with its own Larmor frequency as depicted in Fig. 8.7(c). This
would be sampling in frequencyspace. If atoms were stationary a magnetic ¯eld
gradient would accomplish the same. A possible implementation for this could
also be a inhomogeneouslybroadenedrare-earth doped solid [33].

In short, the experiments described in this chapter is a ¯rst step in the direc-
tion of implementation of a real quantum memory. In Chap. 11 we describe the
remaining steps to reach this goal.
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CHAPTER 9

Entanglemen t, Theoretical
Approac h

This chapter is devoted to theoretical questions and de¯nitions in connection
to entanglement generation between samplesof cesium gases. We consider two
systems1 and 2 as shown in Fig. 9.1 where two macroscopicspins are oriented
oppositely along the x-direction with

D
Ĵx 1

E
= Jx = ¡

D
Ĵx 2

E
. This setting opens

up the possibility to generate an entangled state similar to the EPR-example
in [61] as we will seein the following sections. The tric k is to perform a suit-
able measurement which will \collapse" the state of the atomic spins into an
entangled state, see[62]. This is a di®erent approach than other experimental
demonstrations of entanglement betweenmassive particles [40, 41].

In this chapter we de¯ne what we mean by entanglement and we describe
how to understand the processof entanglement generation by a measurement.
The latter follows quite naive models which are motivated by the fact that the
polarization state of light and the atomic spin state can be described collectively
in the X̂ ; P̂-representation as we discussedin Chap. 2. We also discussgeneral
experimental aspects like the rotating frame, lossesfor light propagation, non-
perfect detectors, and methods for proving the generation of entangled states.
Actual detailed description of experiments and data analysisis given in Chap. 10.
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Ĵz1
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Figure 9.1: The schematic setup of two spin states for entanglement generation.
Two spins are prepared in coherent spin states with opposite directions and the
samemagnitude Jx . This setupopensup the possibility to perform joint quantum
non-demolition (QND) measurements on the two states [62].

9.1 De¯nition of Entanglemen t

Let us characterize entangled states between samplesof macroscopicensembles
of cesium gasesthat we use in our experiments. To this end let us start with
the usual de¯nition of entanglement. We considertwo systems1 and 2 which are
described by a joint wave function Ã. If this wave function cannot be written as
a product Ã = Ã1(x1) ¢Ã2(x2) where Ã1;2 are wave functions of the individual
systems1 and 2 depending on parametersx1;2 of two systems,then the state of
the two systemsis entangled. A well known entangled state is the singlet state
of two spin-1/2 particles jÃi = 1p

2
(j"#i ¡ j#"i ). It is easy to seethat this state

cannot be expressedas a product wave function.
Now, the above is a pure state de¯nition, for mixed statesdescribedby density

operators there is a similar de¯nition. Consideragain two systems1 and 2 and let
the joint density operator begivenby ½. If ½i 1 and ½i 2 aresetsof density operators
describing the individual systems1 and 2, and if ½cannot be decomposedinto a
sum of products of these, i.e.

½6=
X

i

pi ½1i ­ ½2i , State is entangled; (9.1)

where the pi 's are positive, then the system is in an entangled state. The above
de¯nitions are intuitiv e, they tell that individual stories Ã1 and Ã2 or for mixed
states ½1i and ½2i are not enoughto characterize the entire system described by
Ã or ½, something extra is needed. But while being intuitiv e the de¯nitions are
not necessarilyeasyto apply for an experimentalist in the laboratory. However,
from this de¯nition Refs. [63, 64] have derived the following result:

For two continuous variable systems1 and 2 a su±cient condition for having
entanglement is satisfaction of the inequality

Var
³

X̂ 1 + X̂ 2

´
+ Var

³
P̂1 ¡ P̂2

´
< 2; (9.2)

whereX̂ 1, P̂1 and X̂ 2, P̂2, arecontinuousvariablesdescribingthe two sub-systems
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satisfying the commutation relations
h
X̂ j ; P̂j

i
= i for j = 1; 2. If we consider

Gaussianstates this is also a necessarycondition. This entanglement criterion is
easy to apply for an experimentalist, variancesof measuredvariables are easily
estimated by statistical means.

Now, in Chap. 2 we described how our spin systemscould be regardedascon-
tinuous variables described by operators X̂ and P̂ . For our systemof oppositely
oriented spins the above inequality turns into

Var
³

Ĵy1 + Ĵy2

´
+ Var

³
Ĵz1 + Ĵz2

´
< 2Jx , State is entangled: (9.3)

This entanglement criterion is intuitiv e. If we assumethe two systems to be
independent of each other, how low can the left hand side of the inequality
then be? The answer lies in Eq. (2.5). For minimum uncertain states (coherent
spin states) we have Var(Ĵy1) = Var(Ĵy2) = Var(Ĵz1) = Var(Ĵz2) = Jx =2. For
independent states we have Var(Ĵy1 + Ĵy2) = Var(Ĵy1) + Var(Ĵy2) and similar
for the z-components. Taking all this together we seethat equality of the above
criterion is the best we can obtain classically.

We should also here make a referenceto [65] which raises some intriguing
questionsabout the validit y of the useof Eq. (9.2) for spin systems. However, it
is agreedthat the criterion (9.3) is valid.

9.2 Entanglemen t Generation

Let us now discuss the methods we apply in order to generate entanglement.
First of all, consider the commutator

Dh
Ĵy1 + Ĵy2; Ĵz1 + Ĵz2

i E
= i

D
Ĵx 1 + Ĵx 2

E
= i (Jx ¡ Jx ) = 0: (9.4)

The fact that this commutator haszeromeanfor two oppositely oriented spinsen-
suresthe existenceof entangled states, the variancesVar(Ĵy1+ Ĵy2) and Var(Ĵz1+
Ĵz2) can simultaneously be arbitrarily small and break the inequality of the en-
tanglement criterion (9.3).

We will generate the entangled state by a quantum non-demolition (QND)
measurement of the two operators Ĵy1 + Ĵy2 and Ĵz1 + Ĵz2 asdiscussedin [62]. To
describe this processwe will for simplicit y start out with two oppositely oriented
spins J1 and J2 in zero magnetic ¯eld, we comment on the rotating frame with
a non-zero magnetic ¯eld below. Placing the spins as depicted in Fig. 9.1 and
applying a probe laser beam through both samples,the equations of interaction
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(6.11-6.14)will turn into

Ŝout
y (t) = Ŝin

y (t) + aSx (Ĵz1(t) + Ĵz2(t)) ; (9.5)

Ŝout
z (t) = Ŝin

z (t); (9.6)

@̂Jy1(t) + @̂Jy2(t)
@t

= aJx 1Ŝin
z (t) + aJx 2Ŝin

z (t) = 0; (9.7)

@̂Jz1(t) + Ĵz2(t)
@t

= 0; (9.8)

where the Stokes operators here are normalized to photons per second. We see
that a measurement of Ŝout

y will provide information about Ĵz1 + Ĵz2, and if the
secondterm of Eq. (9.5) is large comparedto the ¯rst one we will make e®ective
measurements of the spins. At the sametime, the vanishing time derivatives(9.7)
and (9.8) ensuresthe measurement to be non-destructive. For the time derivative
of Ĵy1 + Ĵy2 to be zero, it is important that the spins are opposite with same
magnitude Jx and the absenceof light lossesbetweenthe samplesis alsorequired
here. If lossesare present the Ŝz -component seenby the two spin sampleswill
be di®erent, seeSec.9.6.

We will let the probe laser be on for a time duration T while measuring the
Ŝy -component of the light. We measurethe photo current i (t) and for the rest
of this chapter we assumethat it is (in appropriate units) equal to Ŝout

y . This
corresponds to a perfect detector e±ciency, seedetection theory in App. E and
Eq. (E.1). Wewill write i (t) := Ŝout

y wherethe dot symbolizesthat a measurement

is performed. De¯ning the integrated value of the outcome as A =
RT

0 i (t)dt, we
¯nd that A is a the outcome of a measurement of the operator

A :=
Z T

0
Ŝout

y (t)dt =
Z T

0
Ŝin

y (t)dt + aSx T(Ĵz1(0) + Ĵz2(0)) : (9.9)

After this processwe may apply another laser beam along the y-direction, or
alternativ ely rotate the two spins by 90 degreeswith help from a magnetic ¯eld
and apply the same laser once again. Then a non-destructive measurement of
Ĵy1 + Ĵy2 is performed and the z-components are una®ected.

Now, we will quantify the magnitude of the secondterm versus¯rst term in
Eq. (9.9). If we calculate the variance we obtain

Var

ÃZ T

0
Ŝout

y (t)dt

!

=
Z T

0

Z T

0

D
Ŝin

y (t)Ŝin
y (t0)

E
dtdt0

+ a2(Sx T)2Var
³

Ĵz1(0) + Ĵz2(0)
´

=
Sx T

2
+ a2(Sx T)2Jx =

Sx T
2

¡
1 + 2a2Sx TJx

¢

´
Sx T

2

¡
1 + 2· 2¢

;

(9.10)
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wherewe usedthe fact that
D

Ŝin
y (t)Ŝin

y (t0)
E

= Sx =2¢±(t ¡ t0), seeEq. (E.10). We

de¯ned · 2 = a2Sx TJx as a ¯gure of merit for the spin contribution compared
to the light noise contribution. Above we assumedthe spins to be prepared in
the coherent spin state with variancesequal to Jx =2, seeEq. (2.5). For e±cient
entanglement generation we need to have · 2 large compared to unit y. We see
that we gain by increasingthe magnitude of the spins Jx , by increasingthe total
photon number nph = Sx T=2, or by adjusting the interaction parameter a given
by Eq. (6.15).

It is here appropriate to connect the concept of entanglement between spin
states to the concept of spin squeezing. If we in the above considerationsonly
had one spin sample(sample 1 for instance) the measurement of Ŝout

y for a laser
beam propagating along the z-direction would obtain information about Ĵz1,
and the variance of

RT
0 Ŝout

y (t)dt would have beenSx T=2 ¢(1 + · 2). At the same
time the e®ectof the probe laser on the Ĵy1-component would be governed by
@̂Jy1(t)=@t = aJx Ŝin

z (t) which leadsto

Ĵy1(T) = Ĵy1(0) + aJx

Z T

0
Ŝin

z (t)dt )

Var
³

Ĵy1(T)
´

= Var
³

Ĵy1(0)
´

+ a2J 2
x

Z T

0
dt

Z T

0
dt0

D
Szin (t)Ŝin

z (t0)
E

=
Jx

2
+

a2J 2
x Sx T
2

=
Jx

2
(1 + · 2);

(9.11)

wherethe initial spin state is assumedto be the coherent spin state with variance
Jx =2. We seethat when we for higher · 2 obtain better information about the
Ĵz1-component of the spin we pile up more noise in the Ĵy1-component which
is required in order not to violate Heisenberg's uncertainty principle (2.3). This

uncertainty relation is a consequenceof the non-commuting property
h
Ĵy1; Ĵz1

i
=

iJ x . Now, for our two sampleswe have commutators

h
Ĵy1 + Ĵy2; Ĵz1 ¡ Ĵz2

i
= 2iJ x and

h
Ĵz1 + Ĵz2; Ĵy1 ¡ Ĵy2

i
= 2iJ x ; (9.12)

while all the other combinations vanish, i.e.

h
Ĵy1 + Ĵy2; Ĵy1 ¡ Ĵy2

i
=

h
Ĵz1 + Ĵz2; Ĵz1 ¡ Ĵz2

i
=

h
Ĵy1 + Ĵy2; Ĵz1 + Ĵz2

i
=

h
Ĵy1 ¡ Ĵy2; Ĵz1 ¡ Ĵz2

i
= 0:

(9.13)

This motivates the interpretation of entanglement to be squeezingof two inde-
pendent modes Ĵy1 + Ĵy2 and Ĵz1 + Ĵz2 at the expenseof anti-squeezing the
conjugatevariables Ĵz1 ¡ Ĵz2 and Ĵy1 ¡ Ĵy2, respectively (such representation has
beendiscussedin [66]). We have the two corresponding Heisenberg uncertainty
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relations

Var
³

Ĵy1 + Ĵy2

´
Var

³
Ĵz1 ¡ Ĵz2

´
¸ J 2

x and

Var
³

Ĵz1 + Ĵz2

´
Var

³
Ĵy1 ¡ Ĵy2

´
¸ J 2

x :
(9.14)

In the caseof two spin samplesa calculation similar to Eq. (9.11) will show how
much noise is piled up in the anti-squeezedvariables Ĵy1 ¡ Ĵy2 and Ĵz1 ¡ Ĵz2,

Var
³

Ĵy1(T) ¡ Ĵy2(T)
´

= Var
³

Ĵz1(T) ¡ Ĵz2(T)
´

= Jx (1 + 2· 2): (9.15)

All equationsin this sectionare coherent evolution of the spin states. But we also
perform measurements which change the spin states in a non-coherent way and
hopefully create the entangled states. In next section we try to model this mea-
surement and the corresponding spin state evolution. The above considerations
will play an important role in the understanding of the results.

9.3 Wave Function Mo deling

The fact that the collective properties of light and atoms can be described by
position and momentum like operators (seeChap. 2) motivates a simple model
where the entire spin state is described by a wave function Ã(x) like it is well
known for a single particle in elementary quantum mechanics. For simplicit y we
will in the following describe a single spin ensemble and the e®ectof a measure-
ment as we already discussedaround Eq. (9.11). As in Eqs. (2.10) and (2.4) we
de¯ne

X̂ L =

RT
0 Ŝy (t)dt
p

Sx T
and P̂L =

RT
0 Ŝz (t)dt
p

Sx T
(9.16)

for light pulses(indexedby L) of duration T and for the atomic spin state (indexed
by A) we de¯ne

X̂ A =
Ĵyp
Jx

and P̂A =
Ĵzp
Jx

: (9.17)

Thesede¯nitions ful¯l
h
X̂ ; P̂

i
= i . We now assumethe state of light and atoms

to be described by a Gaussianwave function on the form

Ã(x) = N exp
µ

¡
(x ¡ x0)2

4¾2
x

+ ip0x
¶

; (9.18)

where N is a suitable normalization constant. A Gaussian distribution is mo-
tivated by the fact that our physical system is composedof a huge number of
particles each having their own statistical properties. The central limit theorem
ensuresthat the collective properties will be Gaussianif the individual particles
are not too far from being independent of each other. The above state ful¯ls
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D
X̂

E
= x0,

D
P̂

E
= p0, Var(X̂ ) = ¾2

x , and Var(P̂) = ¾2
p = 1=(4¾2

x ). We always

have Var(X̂ )Var(P̂) = 1=4, i.e. we are in the minimum uncertainty state. For
the coherent state of light or atoms we have ¾2

x = ¾2
p = 1=2. The operators are

described by the usual substitution X̂ ! x and P̂ ! ¡ i@=@x. We may change
from x to p representation by a Fourier transform

Ã(x) =
1

p
2¼

Z
eipx Ã(p)dp;

Ã(p) =
1

p
2¼

Z
e¡ ipx Ã(x)dp;

(9.19)

which for Eq. (9.18) would turn into

Ã(p) = N exp
µ

¡
(p ¡ p0)2

4¾2
p

¡ ix 0p
¶

: (9.20)

Now, prepare the atomic sample to be in the coherent spin state described by
Ã(pA ) = N exp(¡ p2

A =2) and the light also in the coherent state described by
Ã(pL ) = N exp(¡ p2

L =2). Now, when light and atoms interact, the evolution is
governed by the Hamiltonian (this is essentially Eq. (5.18) with neglectedhigher
order terms)

Ĥ = ¹haŜz (t)Ĵz (t) )

exp

Ã

¡
i
¹h

Z T

0
Ĥ dt

!

= exp

Ã

¡ ia
Z T

0
Ŝz (t)Ĵz (t)dt

!

= exp
³

¡ ia
p

Sx TJx P̂L P̂A

´
= exp

³
¡ i· P̂L P̂A

´
;

(9.21)

where we usedthe fact that Ĵz (t) is constant and · is as de¯ned in the previous
section. With the joint state of atoms and light given by Ã(pL ; pA ) = exp(¡ [p2

L +
p2

A ]=2) we calculate the evolution to be

Ã(pL ; pA ) ! exp

Ã

¡ i
Z T

0
Ĥ dt

!

Ã(pL ; pA ) = N exp
µ

¡
[p2

L + p2
A ]

2
¡ i·p L pA

¶
:

(9.22)
If we Fourier transform this into the x-basis of light corresponding to Ŝy we
obtain (compare Eqs. (9.18) and (9.20) to seethis)

Ã(xL ; pA ) = N exp
µ

¡
[xL ¡ ·p A ]2

2
¡

p2
A

2

¶
: (9.23)

So far we described coherent evolution of the state under the in°uence of the
interaction Hamiltonian. Now we perform a measurement of X̂ L which we model
by letting xmeas

L
:= X̂ L , i.e. we assumethe light part of the state to collapseto a
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de¯nite measurednumber. The remaining atomic state is then described by the
above equation with the variable xL replacedby the constant xmeas

L ,

Ã(pA ) ! N exp

Ã

¡
[pA ¡ ·

1+ · 2 xmeas
L ]2

4 ¢ 1
2(1+ · 2 )

!

: (9.24)

This state reveals the statistics
D

P̂A

E
= ·

1+ · 2 xmeas
L and Var(P̂A ) = 1

2(1+ · 2 ) . We

also have
D

X̂ A

E
= 0 and Var(X̂ A ) = 1+ · 2

2 . Let us convert this back to the spin

variables Ĵy and Ĵz . We get

Var
³

Ĵy

´
=

Jx

2
¢(1 + · 2) and Var

³
Ĵz

´
=

Jx

2
¢

1
1 + · 2 : (9.25)

For the Ĵy -component we obtain exactly the variance given by Eq. (9.11). The
back action noisefrom the light Ŝz -component suppliesthe extra noiseadded to
Ĵy . The Heisenberg uncertainty then allows the varianceof the Ĵz -component to
be reducedup to a factor 1 + · 2. In our simple pure state model we stay in the
minimum uncertainty state and obtain exactly the reduction of Var(Ĵz ) by the
factor (1 + · 2).

For the mean valuesof the spin components it is convenient to usethe units
of the detected signal, i.e. since we measure

R
i (t)dt :=

R
Ŝout

y (t)dt =
R

Ŝy dt +
aSx TĴz we multiply the spins by aSx T and calculate

aSx T
D

Ĵy

E
= 0 and aSx T

D
Ĵz

E
=

· 2

1 + · 2

Z T

0
i (t)dt: (9.26)

Weremember from the previoussectionthat · 2 is the ratio of atomic noiseto light
noisein a measurement with one spin sample. The correction factor · 2=(1 + · 2)
is then intuitiv ely understandable. This factor is the ratio of atomic noiseto the
total noiseand it is the atomic portion that bearsthe spin state information. In
the limit · 2 ! 0 we obtain no information about the spin state, and there is no
back action. Then the best bet for the mean value is the initial coherent spin
state value of zero. On the other hand, if · 2 À 1 the light noiseis negligible and
the correction factor should be unit y.

Now, we may apply the above considerationsto the caseof two spin samples.
If we measureĴz1 + Ĵz2 by integrating the equation Ŝout

y (t) = Ŝin
y (t) + aSx (Ĵz1 +

Ĵz2) we know from Eq. (9.10) that the ratio of atomic to light noise is 2· 2.
Integrating the measuredŜout

y (t) we ¯nd that the mean value of the state after
the measurement is

aSx

D
Ĵz1 + Ĵz2

E
=

2· 2

1 + 2· 2

Z T

0
i (t)dt: (9.27)

From Eq. (9.15) we remember that the pile up of noisein the conjugate variable
Ĵy1 ¡ Ĵy2 is Jx (1 + 2· 2). With the preservation of the minimum uncertainty
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relation in our simple model we ¯nd the variance of the created state to be

Var
³

Ĵz1 + Ĵz2

´
=

Jx

1 + 2· 2 (9.28)

which is the coherent spin state variance reducedby a factor 1 + 2· 2. The same
considerationsapply for the y-components of the spins. We have checked that
the above results for two spin samples(in zero magnetic ¯eld) match the result
of a wave function analysis with Gaussianwave packets.

Our modelsare quite simple and rely on the assumptionthat the collection of
spinsor photons can be described by a wave function depending on the collective
variables. To get more insight into the microscopic picture of the measurement
processwe refer to [67] in the caseof measurements on a single spin ensemble
and to [68] for the opposite spin setup with entanglement generation.

9.4 Rotating Frame and Entanglemen t

As we already discussedin Sec. 4.3 we place the atomic samples in magnetic
¯elds. The spin precessionforces us to consider the above calculations in the
rotating frame and we intro duce the rotating frame coordinates Ĵ 0

y1, Ĵ 0
z1, Ĵ 0

y2,
and Ĵ 0

z2 in analogy with Eq. (4.3). After a little algebra Eqs. (9.5-9.8) can be
written

Ŝout
y (t) = Ŝin

y (t)

+ aSx

³
cos(­ t)[Ĵ 0

z1(t) + Ĵ 0
z2(t)] + sin(­ t)[Ĵ 0

y1(t) + Ĵ 0
y2(t)]

´
; (9.29)

Ŝout
z (t) = Ŝin

z (t); (9.30)

@[Ĵ 0
y1(t) + Ĵ 0

y2(t)]

@t
=

@[Ĵ 0
z1(t) + Ĵ 0

z2(t)]
@t

= 0: (9.31)

We seethat the rotating spin coordinates are constants of motion (regarding the
coherent evolution) and that thesecan be measuredsimultaneously by measuring
Ŝout

y . The sine and cosinecomponents can be separatedelectronically from the
measuredphoto current i (t) if the time of measurement T ful¯ls ­ T À 1. If we
de¯ne

A =
Z T

0
i (t) sin(­ t)dt and B =

Z T

0
i (t) cos(­ t)dt; (9.32)

we get for ­ T À 1

A :=
Z T

0
Ŝin

y (t) sin(­ t)dt +
aSx T

2

h
Ĵ 0

y1(0) + Ĵ 0
y2(0)

i
;

B :=
Z T

0
Ŝin

y (t) cos(­ t)dt +
aSx T

2

h
Ĵ 0

z1(0) + Ĵ 0
z2(0)

i
:

(9.33)
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Theseoperators are measuredby multiplying the photo current by cos(­ t) and
sin(­ t) respectively and integrating over time T. The ratio of measuredatomic
noise to light noisecan be evaluated and we ¯nd that A and B are outcomesof
stochastic variables with variances

Var (A) = Var (B ) =
Sx T

4
(1 + · 2); (9.34)

where · 2 = a2Sx TJx is as de¯ned in previous sectionsand we assumedthe spin
state at t = 0 to be the coherent spin state. Compared to the previous section
the atomic to light noise ratio is · 2 and not 2· 2. The reason is the fact that
during the time T we now spent time measuring both y- and z-components of
the spins and not just a single component.

Wemay alsoconsiderthe conjugatevariablesĴ 0
y1(t)¡ Ĵ 0

y2(t) and Ĵ 0
z1(t)¡ Ĵ 0

z2(t)
as we did in previous section. The evolution of thesecan be shown to be

@[Ĵ 0
y1(t) ¡ Ĵ 0

y2(t)]

@t
= 2aJx Ŝin

z cos(­ t); (9.35)

@[Ĵ 0
z1(t) ¡ Ĵ 0

z2(t)]
@t

= ¡ 2aJx Ŝin
z sin(­ t); (9.36)

and we can integrate this from t = 0 to t = T to evaluate the amount of noise
piled up in thesevariables. The result turns out to be

Var
³

Ĵ 0
y1(t) ¡ Ĵ 0

y2(t)
´

= Var
³

Ĵ 0
z1(t) ¡ Ĵ 0

z2(t)
´

= Jx (1 + · 2): (9.37)

Now we may comparethe results of this section to the previous oneand extrapo-
late the reasoningwith minimum uncertainty states to the rotating frame. After
having performed the measurement our best estimate for the mean values and
variancesare

aSx T
2

D
Ĵ 0

y1(T) + Ĵ 0
y2(T)

E
=

· 2

1 + · 2

Z T

0
i (t) sin(­ t)dt;

aSx T
2

D
Ĵ 0

z1(T) + Ĵ 0
z2(T)

E
=

· 2

1 + · 2

Z T

0
i (t) cos(­ t)dt;

Var
³

Ĵ 0
y1(T) + Ĵ 0

y2(T)
´

= Var
³

Ĵ 0
y1(T) + Ĵ 0

y2(T)
´

=
Jx

1 + · 2 :

(9.38)

Again, let us comment on the results. If · 2 ! 1 we simply have zerovarianceof
Ĵ 0

y1 + Ĵ 0
y2 and Ĵ 0

z1 + Ĵ 0
z2 while

RT
0 i (t) sin(­ t)dt = aSx T=2¢[Ĵ 0

y1 + Ĵ 0
y2] holds (and

similarly for Ĵ 0
z1+ Ĵ 0

z2). This is just a perfect measurement of the spin components
and is consistent with the total neglect of the term Ŝin

y (t) in Eq. (9.29). On the
other hand, if · 2 ! 0 the measurement is e®ectively non-existing and the spin
state is unaltered. Hence we must have variancesequal to the initial coherent
state varianceJx and the meanvalueshouldbezeroindependent on the measured
photo current i (t), the latter is just light noisebearing no information about the
spin state.
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Figure 9.2: The theoretically expectednoisein a measurement of transversespin
components Ĵy1+ Ĵy2 and Ĵz1+ Ĵz2 if the spinsarepreparedin oppositely oriented
coherent spin states, seeEq. (9.39). There is a constant noisecontribution from
light (dashed line) and the atomic contribution will grow linearly with the spin
magnitude Jx following the solid line.

9.5 Entanglemen t Estimation

As experimentalists we wish to createan entangled state betweentwo cesiumgas
samples,in this sectionwe describe somestrategiesfor proving that an entangled
state has been created. To this end we must keep in mind the entanglement
criterion (9.3) and be able to use it. One of the most important tasks is to
calibrate this inequality in the sensethat we must know which values of the
variancescorrespond to equality. To this end remember that if the two samples1
and 2 are independent of each other then Var(Ĵy1+ Ĵy2) = Var(Ĵy1)+ Var(Ĵy2) and
Var(Ĵz1 + Ĵz2) = Var(Ĵz1) + Var(Ĵz2). Furthermore, for coherent spin states the
spins will be in the minimum uncertainty state where theseindividual variances
amount to Jx =2, seeEq. (2.5). We conclude that for two oppositely oriented
coherent spin states we have the equality Var(Ĵy1 + Ĵy2) + Var(Ĵz1 + Ĵz2) = 2Jx .
If we for a given magnitude Jx can createcoherent spin statesand measurethese
varianceswe have calibrated the inequality.

Experimentally we will be in the rotating frame and we will create the coher-
ent spin states by optical pumping processes,seeSec.4.5. Then we will measure
the valuesA and B as in Eq. (9.33) and we will do this several times. By statis-
tical meanswe can then estimate the mean and variance of A and B and study
the statistics as a function of the spin magnitude Jx .

For Jx = 0 we only seethe light noise (and maybe some electronics noise
from the detectors). It is easy to judge whether this light noise is limited by
quantum noise(also called shot noise) by varying the photon number nph of the
laser pulse, the noisevariance should grow linearly with nph , seeEq. (2.12). We
will very often normalize our units of noise to the shot noise of light since the
light noise is easyto measure.

Now, we would start to increaseJx to non-zerovaluesand measurethe noise
variancesonceagain. If the additional atomic noise is limited by quantum pro-
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jection noise,the atomic contribution should increaseproportionally with Jx , see
Eq. (2.5). This fact is also re°ected by the equality of the criterion (9.3). In
Fig. 9.2 we show what a plot of the measuredvariancesVar(A) + Var(B ) ver-
sus Jx should look like in the caseof the atomic noise being characterized by
the quantum projection noise of the coherent spin states. The solid line would
then be a ¯t to the measuredpoints and serve as calibration for the entangle-
ment criterion (9.3). The dashed line symbolizes the shot noise of light. Note
from Eq. (9.33), that the sum Var(A) + Var(B ) actually measuresthe variances
Var(Ĵ 0

y1 + Ĵ 0
y2) + Var(Ĵ 0

z1 + Ĵ 0
z2) + light noise, i.e.

Var(A) + Var(B ) =
Sx T

2
+

µ
aSx T

2

¶ 2 ³
Var

³
Ĵ 0

y1 + Ĵ 0
y2

´
+ Var

³
Ĵ 0

z1 + Ĵ 0
z2

´´

=
Sx T

2

0

@1 + · 2
Var

³
Ĵ 0

y1 + Ĵ 0
y2

´
+ Var

³
Ĵ 0

z1 + Ĵ 0
z2

´

2Jx

1

A

(9.39)

such that the contribution above the dashed line is exactly the left hand side
of (9.3). To connect this calibration to the considerationsin the previous section
we note that the atomic contribution is equal to · 2 in the units whereshot noise
of light has unit y variance.

We will now turn our attention toward the evidenceof entanglement genera-
tion. The possibly entangled state is created by the ¯rst measurement of A and
B which we denote by A1 and B1 (indices 1 for ¯rst pulse). We needto perform
a secondmeasurement A2 and B2 in order to characterize the state created by
the ¯rst one.

Let us discusswhat could be observed if the pure state model of Sec. 9.3
holds exactly. In this casethe ¯rst pulsemeasurement A1 and B1 both have zero
mean and variance 1 + · 2 (which we already showed in Fig. 9.2). The second
measurement variables A2 and B2 will theoretically ful¯l

hA2i =
· 2A1

1 + · 2 and hB2i =
· 2B1

1 + · 2 ;

Var
µ

A2 ¡
· 2A1

1 + · 2

¶
= Var

µ
B2 ¡

· 2B1

1 + · 2

¶
= 1 +

· 2

1 + · 2 =
1 + 2· 2

1 + · 2 :
(9.40)

For the variancesof A2 (or B2) minus the meanvalue the term 1 is the light noise
contribution of the secondpulse and the term · 2=(1 + · 2) is the variance of the
createdentangled state. If by measurements and statistical calculations we could
con¯rm these results we would have proved experimentally that the entangled
state was created. Let us also here discussthe expected variance of the second
measurement alone. We would obtain

Var(A2) = Var(B2) = 1 +
· 2

1 + · 2 + (1 + · 2)
µ

· 2

1 + · 2

¶ 2

= 1 + · 2: (9.41)
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The term 1 is the shot noise of the secondpulse, the term · 2=(1 + · 2) is the
variance of the created entangled state, and the last term arises from the fact
that the meanvalueof e.g.A2 is random, A1 hasvariance1+ · 2 and the correction
factor · 2=(1 + · 2) must be squared. The result is 1+ · 2 which is the sameas the
varianceof the ¯rst pulse. This fact re°ects the QND nature of the measurement.
If we perform a measurement and if a "secret" observer had already performed
the samemeasurement on the spinswithout telling us the outcomewe would not
be able to notice.

Now, the pure state model and its implications discussedabove need not
hold. The model could simply be wrong, or several physical e®ectscould change
the picture. For instance if decoherenceis strong between the ¯rst and second
measurement pulse entanglement could be hard to observe. In order to apply
the above considerations in a more realistic setting we assumemore generally
that the ¯rst measurement (A1; B1) createsa state with mean value (®A1; ®B1)
and variance Var(Ĵy1 + Ĵy2) + Var(Ĵz1 + Ĵz2) = 2Jx ¢¾2. In this casewe can
estimate ® and ¾2 by performing a large number N of measurements each giving
results (A1[i ]; B1[i ]; A2[i ]; B2[i ]), where i is indexing the di®erent measurements.
The variables A2[i ] ¡ ®A1[i ] and B2[i ] ¡ ®B1[i ] will have zero meanand variance
1 + ¾2 in units of shot noise, the term 1 arisesfrom the shot noiseof the second
measurement. We calculate

1 + ¾2 =
1

N ¡ 1

Ã
NX

i

(A2[i ] ¡ ®A1[i ])2 +
NX

i

(B2[i ] ¡ ®B1[i ])2

!

; (9.42)

where® must be chosensuch that the right hand side is minimal. The minimiza-
tion procedure is equivalent to a linear ¯t through (0; 0) if we plot the second
pulse results A2 and B2 versusthe ¯rst pulse results A1 and B1. If ¾2 is below
the level of the coherent spin state · 2 (symbolized by the atomic part above
the dashed line in Fig. 9.2) we have created an entangled state. In Sec. 10.4
we discussexperiments connectedto this method. In Sec.10.1 we discussother
experiments wherewe for technical reasonsdid not have the abilit y to utilize the
above method but we wereable to estimate the varianceof A2 ¡ A1 and B2 ¡ B1,
i.e. we were forced to put alpha to unit y. In this casewe have

1 + ¾2 ·
1

N ¡ 1

Ã
NX

i

(A2[i ] ¡ A1[i ])2 +
NX

i

(B2[i ] ¡ B1[i ])2

!

; (9.43)

i.e. our estimation of the entangled state varianceis not optimal but put an upper
bound on ¾2 which is su±cient for entanglement demonstration. Note, our pure
state model predicts ® = · 2=(1 + · 2). The simple method with ® = 1 should
work best for a large atomic to shot ratio, · 2 À 1.

9.6 Entanglemen t Generation and Losses

Let us discussthe role of lossesfor the generation of entanglement. Consider
Fig. 9.3 where we place two spin samples1 and 2 next to each other and shine
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Jx; 1 Jx; 2

´ 1 ´ 2

i (t) /
D

Ŝdet
y (t)

E

Figure 9.3: Light is propagating through two cells with macroscopicspins Jx 1

and Jx 2 oriented along the x-axis. We parametrize the loss between the two
cells by ´ 1 and the lossesafter the secondcell by ´ 2 (also including the detector
e±ciency). The detector measuresthe Ŝy -component of light.

a pulse of light through them as usual. We assumelossesto be present between
samples1 and 2 modeled by the transmission e±ciency ´ 1 and between sample
2 and the detector modeled by ´ 2. In this casethe Stokesoperators of light will
transform according to Eqs. (A.15) and (A.16). If the light before sample 1 is
described by Sin

x ´ Sx , Ŝin
y , and Ŝin

z , we may show that

Sdet
x = ´ 1´ 2Sx ; (9.44)

Ŝdet
y = ´ 1´ 2Ŝin

y + a´ 1´ 2Sx

³
Ĵz1(t) + Ĵz2(t)

´

+ ´ 2

r
´ 1(1 ¡ ´ 1)Sx

2
V̂y1 +

r
´ 1´ 2(1 ¡ ´ 2)Sx

2
V̂y2 (9.45)

for the light reaching the detectors. The strong Sx -component is attenuated by
the overall e±ciency ´ 1´ 2. The Ŝy component consistsof the attenuated input
¯eld Ŝin

y , a readout of Ĵy1 + Ĵy2 with someattenuation, and ¯nally someadded
vacuum noise described by operators V̂y1 and V̂y2 (see Sec.A.4). Even in the
caseof lossesbetween samples1 and 2 (´ 1 < 1) we readout Ĵz1 and Ĵz2 with
equal weight. Atoms will seethe back action from the Ŝz -components which at
sample1 and 2 amount to

Ŝcell 1
z = Ŝin

z ; (9.46)

Ŝcell 2
z = ´ 1Ŝin

z +

r
´ 1(1 ¡ ´ 1)Sx

2
V̂z1: (9.47)

Sincethesetwo are di®erent, there will not be a perfect back action cancellation
in the caseof opposite spins (Jx 1 = ¡ Jx 2 = Jx ). The evolution of spins can
be found by time integration of Eqs. like (4.4-4.7) which is straightforward but
cumbersome. We will not carry out the calculations here but just state the
results.

² If we prepare two coherent spin states with x-components Jx 1 and Jx 2 like
in Fig. 9.3 and if we perform measurements like those described in connec-
tion to Eq. (9.39) we do not expect the measurednoise to depend linearly
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on the spin magnitude, a quadratic component is added. This quadratic
contribution arisesfrom the non-perfect cancellation of back action noise.

² The optimal balancing of spins which reducesthe quadratic contribution
most is having Jx 1 = ¡ Jx 2. This is independent on ´ 1.

² The shot noise measuredon the detectors depend only on the number of
photons received by the detector.

² In the caseof balanced spins Jx 1 = ¡ Jx 2 = Jx the measurednoise (in
units of shot noise) follows Eq. (9.48) below. Here we de¯ne PN/SN as the
projection noise(PN) to shot noise(SN) ratio. This increaseslinearly with
Jx . The result PN/SN = · 2 = a2Sx TJx in caseof no lossesis modi¯ed to
PN/SN = ´ 1´ 2· 2.

Measurednoise = 1 +
PN
SN

+
1 ¡ ´ 1

12́ 1´ 2

µ
PN
SN

¶ 2

: (9.48)

The quadratic term vanishesif ´ 1 = 1, then back action cancellation is perfect.
The front factor 1=12́ 1´ 2 is valid for a quantum noise limited Ŝz -component of
light. If there is additional classicalnoise from e.g. the laser the detected back
action is larger.

For entanglement generation, the non-canceledback action noiseleadsto the
fact that we cannot measureĴy1 + Ĵy2 without disturbing Ĵz1 + Ĵz2 to someex-
tent. Sinceback action noiseincreasesquadratically with Jx this is an increasing
problem for increasingPN/SN ratios. At the sametime, a large PN/SN ratio is
required in order to generatestrong entanglement as we saw in the previous sec-
tions. Hence,avoiding lossesbetweensamples1 and 2 and a good spin balancing
is important for e±cient entanglement generation. On the other hand, for weak
entanglement with small · 2 we should not worry too much about the back action
cancellation.

9.7 The A tomic Pro jection Noise Level

In previous sectionswe discussedthe entanglement criterion (9.3) and its cali-
bration by linearit y of the spin projection noiselevel like depicted in Fig. 9.2 and
discussedin Sec.9.5. The linearit y of the observed noise is a strong indication
of the quantum projection noise. For instance, all technical noise sourcesfrom
external ¯elds acting on the spin state would contribute to all atoms and lead to
extra noisewhich scalesquadratically with the atomic spin Jx . However, having
support from theoretical estimations on the ratio of atomic to shot noise· 2 will
always be welcome. This section is devoted to such an estimate.

Wewish to utilize the DC-Faraday e®ectdescribed in Eq. (6.9). If a beamwith
linear polarization is propagating along the x-direction (along the macroscopic
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spin) the direction of polarization will rotate by an amount

µDC [rad] = ¡
a1° ¸ 2Jx

16¼Ae®¢
: (9.49)

This is Eq. (6.9) multiplied by the e®ective transverseareaAe® of the vapour cell
in the numerator and denominator and we exploit the fact that ½Ae®L ĥ| x i = Jx .
From Sec.9.4 we know that in the rotating frame we expect atomic to shot noise
ratio

· 2 = a2Sx TJx = 2aSx T
aJx

2
= 2aSx TµDC [rad]: (9.50)

In the last step above we assumedthat the a = ° ¸ 2a1=8¼Ae®¢ really is the
correct a to insert in the equation for · 2. The probe beam does not have cross
section A = Ae® but somewhatsmaller (t ypically around 50% of that area). An
argument in favour of using Ae® anyway is the fact that atoms move in and out
of the beam leading to an e®ective smaller interaction strength since atoms are
inside the beamon averageduring time T ¢A=Ae®. If this model is valid we arrive
at following estimate for · 2

· 2 =
18:6 ¢P[mW] ¢T[ms]¢a1(¢) ¢µDC [deg]

¢ blue [MHz]
: (9.51)

We converted µDC into degreesinstead of radians, P is the power of the probe, T
the time duration of the pulse,¢ blue = ¡ ¢ the blue detuning, and the parameter
a1 wasde¯ned in Eq. (5.16). WeconnectedSx = (photon °ux) =2 = P=2¹h! where
! = 2¼º = 2¼c=¸ is the optical frequency of the laser beam and ¸ = 852nm is
the wave length. We also inserted L = 3:0cm and Ae® = 6:0cm2. All parameters
on the right hand side are easy to accessexperimentally and serve as a good
estimate for the ratio · 2. In addition to the above equation we should remember
that · 2 is reducedby lossesand detector ine±ciencies, seeSec.9.6.

An alternativ e estimation method is to perform absorption measurements to
¯nd the density of atoms in the vapour cell. This leads to an estimate for Jx

which again estimates · 2 = a2Sx TJx .
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CHAPTER 10

Exp erimen tal Generation of
Entangled States

In this chapter we demonstrate the generationof entanglement. This is the most
important result of this thesis, the experimental work was done in 2001 and
we devote Sec. 10.1 to the discussionhereof. The results are published in [I].
The experimental setup of this experiment deviates a little from the discussion
of Chap. 4 and we comment this when appropriate. After the 2001 entangle-
ment experiment we decided to rebuild the setup for reasonsthat we discussin
Sec.10.2. On top of this we moved our laboratories twice, onceinternally at the
Department of Physics and Astronomy at the University of Aarhus, and then
from Aarhus to the Niels Bohr Institute at CopenhagenUniversity.

This new experimental setup hasat the time of writing not yet demonstrated
entangled states for various reasonsbut the problems encountered on the way
have in somecasesbeenvery interesting. We describe someof theseproblems in
Sec.10.3. In Sec.10.4 we discussthe present state of the entanglement experi-
ment. We concludethis chapter in Sec.10.5 with a summary of our results.

10.1 Entanglemen t Demonstration

Let us now turn to the experimental demonstration of entanglement generation.
The experimental setup is shown in Fig. 10.1, this is a little di®erent than the
setup mentioned in Chap. 4. Here two cells are situated next to each other, they
arenot placedin their own magneticshieldasin Fig. 4.5. Also, the timing of laser
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Figure 10.1: Experimental setup for entanglement generation. In this experiment
the vapour cells are situated next to each other. The cells can be surrounded
by a solenoidand a magnetic shield (not shown here). The laser settings are as
described in Sec.4.1 but the timing is controlled by a chopper. A noise detec-
tor monitors the classical noise of the probe laser. After the probe laser from
the ti:sapphire laser has passedthe atomic samples its Ŝy -component is mea-
sured. The coil generating the RF-magnetic ¯eld for spin state characterization
(Chap. 7) is partly visible above the cells.

pulsesis controlled by a chopper. The probe laser is detuned by ¢ = ¡ 700MHz,
the duration is Tprob e = 0:45ms,and the power is P = 5:0mW. The optical pump
laseris tuned to the 6S1=2; F = 4 ! 6P1=2; F = 4 transition and the repump laser
is tuned to the 6S1=2; F = 3 ! 6P3=2; F = 4 transition as described in Sec.4.1.
The duration of pumping is Tpump = 0:45ms. The total experiment cycle is 2ms,
it is shown in Fig. 10.2(b). The polarization of the probe laser is 54± with respect
to the direction of spin polarization. According to Eq. (6.24) this is the condition
for having no Stark shifted Larmor frequencies. From Eq. (6.19) we also know
that this setting is vulnerable to excesslaser noise. For this reason we use a
photo detector for monitoring the classicalnoise of the probe laser as shown in
Fig. 10.1. If the classicalnoiseincreasestoo much we simply wait for it to settle
down again beforecontinuing experiments.

The magnitude of the spin components Jx 1 and Jx 2 are measured(on a rel-
ative scale) by the magneto-optical resonancemethod as described in Chap. 7,
especially by someof the pulsed methods mentioned in Sec.7.5. The spin co-
herencetime is also measuredby MORS, in absenceof laserswe typically ¯nd
T2 = 15¡ 30ms. At the time of this experiment we had not developed the DC-
Faraday measurement for direct measurement of Jx 1 and Jx 2. The absolutevalue
of the spinsJx 1 = ¡ Jx 2 ´ Jx is estimatedby measuringthe optical depth ® of the
atomic sample with a weak, resonant, non-saturating probe beam. The optical
depth relates input intensity I 0 to the output intensity I by I = I 0 exp(¡ ®). The
density ½of atoms can then be found by ® = ½¾L where L is the sample length
and the relevant crosssection ¾ for our Doppler broadenedatoms is estimated
by ¾= ¸ 2=2¼¢° =±º D . Here ° is the optical line width, ±º D is the Doppler width,
and ¸ is the optical wave length. With Doppler broadening present, roughly a
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Figure 10.2: (a) The signal road from balanceddetectors to noisevariance esti-
mation. The photo current passesa signal gate which may include or excludeany
of the two pulses. The HF lockin ampli¯er demodulates the signal at the Larmor
frequency­. The sine and cosinecomponents at ­ from the HF lockin ampli¯er
are fed into two LF lockin ampli¯ers demodulating the signal at the cycle fre-
quency500Hz. The outputs are averagedand squaredin an oscilloscope. (b) At
the bottom is shown the laser pulse sequence.The pump and probe lasersboth
have pulse durations 0.45ms. The total cycle is 2ms. Above this is shown the
corresponding local oscillator ¯eld for the LF lockin ampli¯ers. Further above is
shown an exampleof HF lockin output. Mixing thesewith the LF local oscillator
will lead to estimation of A1 and B1 for a one pulse experiment and of A1 ¡ A2

and B1 ¡ B2 for a two pulse experiment.

fraction ° =±º D of the atoms are on resonance. This method is a bit crude and
hencewe should not trust the magnitude in absoluteunits to better than a factor
of 2-3. But on the relative scalewe still estimate to have 5% precision.

The spins must be balanced with opposite orientation, Jx 1 = ¡ Jx 2. This
is done by simultaneously measuring MORS for the two samples. The MORS
should vanish when the spins are balanced if the pumping conditions are sim-
ilar and if the Larmor frequenciescoincide. We estimate this can be done to
a precision of 5%. Rough adjustments of spin magnitudes are controlled by the
temperature of the vapour cells. Fine tuning is performedby adjusting the power
of the repump laser. The two Larmor frequenciesare adjusted to coincide by a
small extra coil next to one of the cells (a black wire is visible on the left cell
in Fig. 10.1). The orientation is also estimated by measuring MORS, for this
we increasethe magnetic ¯eld by roughly a factor of two to better resolve the
quadratic Zeemane®ect.

When the probe light has passedthe two atomic samplesits Ŝy -component
is measuredby a set of balancednoisedetectors. The di®erential photo current
is then handled as shown in Fig. 10.2(a). First, an electronic gate turns on or
o® the observation of the two pulses, for CSS noise calibration we only need
the ¯rst pulse, and for entanglement estimation we needboth, seediscussionsin
Sec.9.5. Then the gated photo current is fed into a high frequency (HF) lockin



98 Chapter 10 - Experiment al Genera tion of Ent angled St ates

ampli¯er. The local oscillator of this is adjusted to the Larmor frequencyof the
atomic samples.The two outputs of the HF-lockin ampli¯er deliver the sine and
cosinecomponents of the photo current, or in other words, a signal dependent on
Ĵ 0

y1 + Ĵ 0
y2 and Ĵ 0

z1 + Ĵ 0
z2, respectively, seediscussionin Sec.9.4. Thesesignalsare

taken to two low frequency (LF) lockin ampli¯ers the local oscillator of which
is a sine wave running at the chopping frequency 500Hz corresponding to the
experimental cycle time of 2ms. The demodulation at this frequencyensuresthat
in a two pulseexperiment, the valueof the two measurements aresubtracted from
each other. This is also illustrated in Fig. 10.2(b). Now, by setting the lockin
ampli¯er in \r"-mo de (delivering the magnitude of the frequency component at
500Hz) we obtain after squaring

P
i (A1[i ] ¡ A2[i ])2 and

P
i (B1[i ] ¡ B2[i ])2 in the

languageof Secs.9.4 and 9.5. This is exactly what we need for entanglement
estimation according to Eq. (9.43). To be complete, for the LF-lockin ampli¯er
to work properly, we need to integrate over a time duration longer than 2ms
(otherwise a 500Hz frequency component cannot be singled out). This means
that we really average over some pulses (maybe 5-10) before squaring in the
above sums. This is perfectly OK for independent measurements.

Now let us concentrate on the noiseresults. We start out by one pulse mea-
surements and move the Larmor frequency ­ far away from the local oscillator
frequencyat 325kHz. Then we only measurethe noiseof light, and we check that
the Ŝy -measurement is limited by shot noiseby observing the linear dependence
of the noiseon the probe power.

Next, we move the Larmor frequenciesof the two atomic samplesback to
coincidewith the local oscillator at 325kHz. The spinsarebalancedwith opposite
orientation and with magnitude Jx . The noise properties of the CSS is now
measured,the result is shown in Fig. 10.3(a). On the abscissais the magnitude
Jx and on the ordinate we plot the variance of A1 plus the variance of B1, and
we normalize this to the result for shot noise of light. We seethat for low Jx

the measuredpoints depend linearly on Jx which is the ¯ngerprin t of the atomic
spin projection noiseaccording to the discussionaround Eq. (9.39) and Fig. 9.2.
We make a ¯t to the linear part of the graph which is now our calibration for the
CSSnoise level. The non-linear part for higher Jx may arise from non-canceled
back action, pile up of technical noise,etc. We do not know in detail the source
of this extra noisebut this is also irrelevant. The important point is the fact that
we reached the linear dependencefor our calibration. We note, that the slope of
the linear ¯t is 0.81 when Jx is measuredin units of 1012. We compare this to
the theoretical value · 2 = a2Sx TJx , where a = ° ¸ 2a1=8¼Ae®¢. Inserting the
correct detuning and Ae® ¼ 6:0cm2 we obtain · 2 = 0:83¢Jx [1012] which is close
to the measuredvalue. But this excludesthe e®ectof lossesand we remember
that our estimate of Jx in absolute units is quite crude. We only conclude that
we ¯nd agreement within the right order of magnitude for · 2.

Next, we turn to the two pulsesexperiment for demonstrating the entangle-
ment generation. After each pumping pulse we shine two pulsesof light through
the samplesto measurethe spin components Ĵ 0

y1 + Ĵ 0
y2 and Ĵ 0

z1 + Ĵ 0
z2 twice. There

is a 0.5msdelay between these two pulses. The resulting noiseof the di®erence
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Figure 10.3: (a) The measurednoise(squares)in a single pulse experiment, the
noise variance is normalized to shot noise. On the abscissawe plot Jx , and
for Jx = 0 we measurethe shot noise of light. We seethat the noise variance
increaseslinearly with Jx which is the ¯ngerprin t of the quantum projection noise
of the atomic spins, seethe discussionconnectedto Eq. (9.39) and Fig. 9.2. The
straight line is a ¯t to the linear part of the data points, the slope is 0.81. (b)
The measurednoise(stars) of the di®erencebetweentwo pulses,herenormalized
to the CSSnoise(i.e. divided by the straight line of part (a)). The straight line
¯t of part (a) hasuncertainty in the slope which we recalculateinto the error bars
in part (b). The data points should fall below horizontal solid line in order to
demonstrateentanglement, we seethis is indeed the casefor the points at higher
Jx . The dotted line is the shot noiseof a single light pulse, the dash-dotted line is
twice the shot noise. The data points cannot fall below twice the shot noise, the
reasonsfor them being higher than this level are decoherence,losses,etc. The
lowest data point is (36 § 7)% below unit y.

is plotted in Fig. 10.3(b). Here the abscissais as in part (a) of the ¯gure but the
ordinate is now normalized to the CSSnoiselevel, i.e. every data point is divided
by the value of the straight line in Fig. 10.3(a). In these units the horizontal
solid line is the boundary we have to be below in order to ful¯l the entanglement
criterion (9.3). This corresponds to ¾2 < · 2 as we discussedin Sec.9.5. We see
that this is indeed the casefor the points at higher Jx and we have proved the
generation of entangled states. Since we normalize the data points to the CSS
noise level the uncertainty of the slope in Fig. 10.3(a) contributes to the error
bars of Fig. 10.3(b). The lowest data point is positioned (36 § 7)% below the
CSSnoise level.

The dotted line is the shot noise level of light, and the dash-dotted line is
twice this level. In our two pulse experiment we can never obtain data points
below this level since the noiseof Ŝin

y for each pulse is uncorrelated to all other
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noise sources. In the ideal casewith no decoherencewe should on the other
hand reach down to this level. The exact reasonthat we are not at this level is
unknown but losses,decoherence,and technical noise will play somerole. The
crucial point is the fact that we are below the horizontal line and demonstrate
the generationof entanglement betweenthe two atomic samples.Sincethe delay
betweenthe two laserpulsesis 0.5mswe know that the life time of our entangled
state is at least that long.

Somecomments are in place for the obtained results. As we discussedabove,
the fact that the averaging procedure involves several pulses before squaring
is OK if the atoms are independent of each other. From the magneto-optical
resonancemethods we can estimate the refreshingrate ¡ pump of the optical pump
laser. We know that the transversespins under in°uence of pumping decay as
Jy (t) = Jy (0) exp(¡ ¡ pump t=2). We estimate that ¡ pump Tpump =2 ¼ 1 so that we
do refresh atoms to a high degree. One may ask whether this level is enough.
The straight line observation of Fig. 10.3(a) is a strong indication that we do
refresh the spin samplesu±ciently , we know that noisepiling up in atoms scale
quadratically with Jx .

Another issueis the orientation of atoms. We know that for the lower linear
part of Fig. 10.3(a) it is better than 95%. This is measuredby MORS in a setting
where the optical pump power is reducedto resolve the quadratic Zeemane®ect
(in addition to increasing the magnetic ¯eld). We assumethat a higher optical
pump power will do a better job. A non-perfect orientation compared to the
100%orientated coherent spin state can be regardedas a thermal excitation and
we expect this state to be more noisethan the CSS.We try to deliberately reduce
the orientation and observe the e®ecton the noise. We do not ¯nd any increase
in the noise level, however.

10.2 Changing the Exp erimen tal Setup

The experiments of the previous section are performed in the old experimental
setup. We decideto changethe experimental setup for several reasonswhich we
will comment on now.

For the mounting and magnetic shielding of vapour cells we refer to Fig. 10.4
where the old and new setups are shown. In the old setup two vapour cells are
placed adjacent to each other inside the samemagnetic shielding making laser
accessvery cumbersome. In the new setup the shielding and vapour cells are
designed such that laser accessis possible from six directions. This setup is
suitable for experiments involving three or four vapour cells (we will discusssuch
experiments in Chap. 11).

On the laser side, in the old setup we use a chopper to control the timing
of pulsesas we discussin Sec.10.1. While being very simple, this setup is not
°exible. We wish to vary the time duration of pumping and probing lasers.
We would also like to vary the delay between various pulses in order to study
decoherencee®ects.In addition, the newsetupwith AOMs and EOMs controlling
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(b)(a)

Laser access

Laser access

Figure 10.4: (a) The old experimental setup. Two vapour cells are placed inside
the magnetic shielding cylinder shown. We only have laser accessfrom one end
and needto place mirrors inside the cylinder (seepicture in Fig. 10.1). (b) The
new experimental setup. Here each vapour cell is situated in its own magnetic
shielding with laser accessfrom six di®erent directions (shown with red arrows).
This setup is more suitable for three or four sampleexperiments.

laser pulses opens up the possibility to shape the temporal pro¯le of the laser
pulse.

What regards the data acquisition we would like to implement the weighted
entanglement estimation methods of Eq. (9.42) rather than the more simple
method of Eq. (9.43). The data acquisition system of the old and new ex-
periments are discussedaround Figs. 10.2 and 10.6(a), respectively. The new
acquisition methods also enable us to do more detailed statical analysis on our
data.

We need to control the temperature of vapour cells. In the old setup an
electric heater is placed inside the magnetic shielding. This can in somecases
create magnetic ¯elds disturbing the experiments and heating has to be turned
on and o® during measurements. The new setup utilizes water heating/cooling
in an aluminum block as depicted in Fig. 4.5. As we shall seein the next section
this aluminum also creates magnetic noise and we are presently working on a
non-metallic temperature control using air °ow.

Moving from Aarhus to Copenhagenalso meant a change in environment.
The laboratory magnetic ¯elds in Copenhagenare more noisy than in Aarhus.

10.3 Magnetic Field Noise

For the experiments we need to exclude external °uctuating magnetic ¯elds. If
a static magnetic ¯eld is added to our bias magnetic ¯eld, the Larmor frequency
­ = 325kHz will depend on the external ¯eld. For entanglement generation we
need to have a stable Larmor frequency for several minutes. In fact, we have
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observed stochastic changesof the Larmor frequencyat the level of up to 100Hz.
The time scale for these changesis of the order of 1 secondor slower. These
variations correspond to magnetic ¯eld changesof 0.3 milligauss at the atoms.

The magnetic noise is much more quiet betweenroughly 1:30amand 4:30am
in the night. This is consistent with the night stand still of the local trains which
are running about 1km away from the laboratory at the Niels Bohr Institute. The
variations has been discovered to be in the vertical component of the magnetic
¯eld which is shieldedpoorly (only a factor 10-15) by the construction shown in
Fig. 4.5(c). The remedy is to rotate the mounts shown in Fig. 4.5 by 90 degrees,
the shieldshave a much higher e±ciency perpendicular to the curved surface. So
the problem is eliminated but this story tells us in very understandable terms
that our measurements are quite sensitive.

Another problem that we have encountered is °uctuating magnetic ¯elds at
the Larmor frequency. As discussedin Chap. 7, by intro ducing a time-varying
magnetic ¯eld transverseto the x-axis of spin polarization wemodulate the trans-
verse components of the spin for atomic spin state characterization. This has
proved very useful, but if °uctuating magnetic ¯elds are present beyond our con-
trol we encounter problems. In Fig. 4.5(a) we show how our vapour cells are
placed on an aluminum block. Below we will seehow this aluminum block cre-
ate random ¯elds disturbing our experiments and we will try to estimate the
magnitude of these¯elds.

With atoms polarized along the x-axis we are sensitive to magnetic ¯eld °uc-
tuations along the y- and z-axis. With a magnetic ¯eld B present, the Hamil-
tonian describing the e®ecton the entire atomic spin J reads (to ¯rst order)
Ĥ = gF ¹ B B ¢J, seeEq. (F.4). With Bx being our usual static magnetic ¯eld
we get Larmor precessionand we considerthe rotating frame coordinates Ĵ 0

y and
Ĵ 0

z . In absenceof decay mechanismswe can easily show that

@
@t

Ĵ 0
y (t) =

gF ¹ B Jx

¹h
(+ cos(­ t)Bz (t) ¡ sin(­ t)By (t)) ;

@
@t

Ĵ 0
z (t) =

gF ¹ B Jx

¹h
(¡ sin(­ t)Bz (t) ¡ cos(­ t)By (t)) ;

(10.1)

where By (t) and Bz (t) are the °uctuating magnetic ¯elds which we assumefor
the moment to becommonto all atoms. Wewish to integrate the aboveequations
formally and calculate the varianceof Ĵ 0

y (t) and Ĵ 0
z (t). To this endweassumethat

hB i (t)B j (t0)i = SB ¢±(t ¡ t0)±ij where i; j = y; z and SB is a constant describing
the spectral noiseof the magnetic ¯eld. This kind of correlation assumesthat the
magnetic noise has fast time dynamics compared to our typical spin evolution
time. Then we obtain

D
Ĵ 02

y (t)
E

=
D

Ĵ 02
y (0)

E
+

µ
gF ¹ B Jx

¹h

¶ 2

SB t;

D
Ĵ 02

z (t)
E

=
D

Ĵ 02
z (0)

E
+

µ
gF ¹ B Jx

¹h

¶ 2

SB t:

(10.2)
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Figure 10.5: The measurednoise of a single pulse experiment with a single cell
prepared by optical pumping. On the horizontal axis is the delay time between
the pump pulsepreparing the spin state and the probe pulsemeasuringthe spin.
The noise level is believed to be closeto the CSS level at t = 0, and the linear
increaseis attributed to the noisegeneratedby random magnetic ¯elds. For this
experiment µF = 13:9± and ¢ = ¡ 875MHz. Removing the aluminum block also
removes increasein the noise level.

We seethat the variance of Ĵ 0
y and Ĵ 0

z increaseslinearly with time. In Fig. 10.5
we show the results of an experiment con¯rming this behavior. For a single
spin sample we prepare the coherent spin state as good as we can with optical
pumping. Then we wait time t (called the pump-probe delay) before shining a
pulse measuring Ĵ 0

y and Ĵ 0
z . The measuredvariance is shown in Fig. 10.5 as a

function of t. The units on the vertical axis is the shot noise level of light. We
believe that 0.50 is not far from the CSS noise level and we conclude from the
data that the slope of the increasing noise is 128s¡ 1 in units of the CSS noise.
Sincethe CSSvarianceof Ĵ 0

y and Ĵ 0
z is Jx =2 we get from Eq. (10.2) the theoretical

slope

Slope = 2Jx SB

³ gF ¹ B

¹h

´ 2
(10.3)

in CSS noise units. To calculate our experimental estimate of SB we need to
¯nd Jx . With ¢ = ¡ 875MHz and a DC-Faraday measurement of µF = 13:9± we
¯nd by Eq. (6.9) that Jx = 1:5 ¢1012. Then we derive SB ¼ 9 ¢10¡ 32Tesla2s.
The noise in a bandwidth ±! is SB ±! where ±! is measuredin rad/s. Taking
the square root and converting to Hz we conclude that our approach estimates
magnetic ¯eld °uctuations of magnitude 7 ¢10¡ 15Tesla=

p
Hz.

Our assumptionthat all atoms experiencethe samemagnetic ¯eld is probably
wrong, and accordingly the real °uctuating ¯eld is probably higher than our
estimate. In [69] the random magnetic ¯eld from a metal ¯lling one half plane
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(e.g. x < 0 as in our case)is discussed.The origin of these ¯elds is the thermal
random currents inside the metal. At a certain point in space(x; y; z) with x > 0
their Eq. (10) reads

Z 1

¡1
d¿hB i (t + ¿)B j (t)i T ei! ¿ =

¹ 2
0! 2¹h²0Im²(! )
1 ¡ e¡ ¹h ! =kB T

t ij

16¼x

!
3¹ 2

0¾0kB T
32¼x

±ij for i; j = y; z;

(10.4)

wheret ij = 3=2 for i = j = y; z. The approximation after the arrow assumes! to
be much slower than the inverseof the electron relaxation time scale¿ in order to
connect the relative permittivit y ²(! ) to the DC-conductivit y ¾0 of aluminum by
simple Drude theory Im²(! ) = ¾0=²0! . We also assumethe typical energy to be
lessthan thermal °uctuations ¹h! ¿ kB T. Theseconditions are easily ful¯lled for
! ¼ 325kHz. According to the aboveour approximation hB i (t)B j (t0)i = SB ¢±(t ¡
t0)±ij is valid. Inserting relevant values, including x ¼ L = 3:0cm, we calculate
the theoretical estimate of

p
SB = 1:2 ¢10¡ 12Tesla=

p
Hz. We seethis number

is more than two orders of magnitude higher than our experimental estimate.
This is probably an e®ectof us neglecting spatial correlations. Furthermore, the
result for a half plane ¯lled with metal must overestimate the ¯eld somewhat.
We can probably conclude that the ¯eld seenby our atoms is somewhereabove
10¡ 13Tesla=

p
Hz which still is a small ¯eld. We do indeed perform quantum

limited measurements of magnetic ¯elds and further study of ultimate sensitivity
could be interesting. For our entanglement generationwe learn that metal should
be avoided closeto our atoms.

10.4 Weighted Entanglemen t Estimation

In this section we describe someaspects of our search for entangled states with
our newer experimental setup. We place the atomic vapour cells in mounts as
depicted in Fig. 10.4(b) (but rotated by 90 degrees).The separationbetweenthe
two setups is roughly 30cm. We shine the probe laser as usual to measurethe
transversecomponents of the atomic spins, and we may also direct part of the
probe laser along the direction of the macroscopicspins in order to measureJx

directly. Then we have the full capability to characterize the spin states by the
methods of Chap. 7.

After the probe laser has passedthe atomic spins the Ŝy -component is mea-
sured giving photo current i (t). The following data handling is depicted in
Fig. 10.6(a). The HF lockin ampli¯er givesasoutputs sin(­ t)i (t) and cos(­ t)i (t)
which are integrated in a homebuilt integrator over the probepulseduration with
results A and B , seeEqs. (9.32) and (9.33). Thesenumbers are stored in a com-
puter and we can processthe data afterward. An example of such processing
is the analysis discussedin connection to Eq. (9.42) and shown in Fig. 10.6(b).
Herewe seethe result of the secondpulsemeasurement A2 plotted versusthe ¯rst
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Figure 10.6: (a) Schematic view of the signal processing (compare to
Fig. 10.2(a)). The di®erential photo current from the detectors is demodulated
in the HF lockin ampli¯er to give the sine and cosinecomponents at the Larmor
frequency­ as outputs. Theseare integrated and we obtain two numbers A and
B bearing information about the spin state, seeEqs. (9.32) and (9.33). For each
probe laser pulse these numbers are stored in a computer and can be used for
further analysis. (b) An example of correlations between the ¯rst and second
probe laserpulsegiving results A1 and A2. We plot A2 versusA1 (10.000points)
and perform a linear ¯t, this is exactly the method described around Eq. (9.42).
We seethe slope ® = 0:181 is non-zero, the ¯rst pulse result can clearly be used
to predict to someextent the secondpulse measurement.

pulseresult A1. If atomic noiseis much greater than shot noise,and if everything
elseis ideal, thesepoints should be on a commonstraight line through (0; 0) with
unit y slope. In other words, the QND measurement would be perfect and the
two measurement results should be identical. But in the casewe describe in this
section we have atomic noise lessthan shot noise, the scattering of data points
in the Fig. 10.6(b) demonstrates this. We perform a linear ¯t of the data and
get a slope of ® = 0:181 along the lines of Eq. (9.42). The non-zeroslope clearly
indicates a correlation betweenA1 and A2 (and a similar plot can be madefor B1

and B2). The question is, are these correlations strong enough to demonstrate
entanglement following the criterion (9.3)?

The answer to this question follows from a thorough analysis as described
in Sec.9.5. First, we must calibrate the noise level of the coherent spin state
(CSS). This is doneby measuringthe variancesVar(A1) + Var(B1) as a function
of the magnitude Jx of the oppositely oriented macroscopicspins. This is plot-
ted in Fig. 10.7(a) with black squares. The shot and electronic noise has been
subtracted, i.e. we only plot the atomic noise(normalized to shot noise). On the
horizontal axis is the DC-Faraday angle µF which we remember is proportional
to Jx . The solid line is a linear ¯t through (0; 0) of the black points, and it
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Figure 10.7: Data demonstrating the weighted method of entanglement estima-
tion discussedaround Eq. (9.42). (a) We vary the magnitude Jx of the macro-
scopic spin and measure this conveniently by the DC-Faraday rotation angle
µF , seeEq. (6.9). Against this is plotted with black squaresthe atomic noise
variance of the ¯rst pulse, with red triangles the secondpulse noise, and with
greenstars the weighted method estimate ¾2 of the state generatedby the ¯rst
pulse. The straight line ¯t (solid line) is a calibration of the CSSnoiselevel, and
with the greenstars above this level our data shows no entanglement. The fact
that the red triangles are above the black squaresindicate decoherence,technical
noisepile up, or the like. (b) The experimental ¯tting parameter ® (squares)of
Eq. (9.42) versusµF and the theoretical estimate ® = · 2=(1 + · 2) (solid line) in
the ideal casewith no lossesor decoherence.We seethat in somesensewe are
only e®ective to the level of 50%.

serves as calibration of the CSS noise level. For the experimental points shown
we used laser detuning ¢ = ¡ 875MHz, probe power P = 4:0mW, and probe
duration Tprob e = 650¹ s. The probe laser is polarized along the x-axis parallel
to the macroscopicspin direction, we wish to examinethe setting whereclassical
laser noise is least likely to play a role according to Eq. (6.19). The setting of
the optical pump and repump lasersare as described in Sec.4.1.

We now use Eq. (9.51) to estimate the slope theoretically. We ¯nd the ex-
perimental slope to be 48% of the theoretical. If loss of light occurs between
the vapour cells and betweenthe cells and detectors the theoretical level should
be decreasedcorrespondingly, seeSec.9.6. But a 52% overall loss is more than
expected, a level of 20% would be more acceptable. We concludeeither that the
simple theoretical estimate of Sec.9.7 is good only within a factor ¼ 2, or that
there e®ectively may be more lossesthan we expect.

Now, in the languageof Sec.9.5 the straight line of Fig. 10.7(a) calibrates · 2

and the weighted method of Eq. (9.42) determinesthe slope ® (seeFig. 10.6(b))
and the variance ¾2 of the possibly entangled state. The value of ¾2 is plotted
in Fig. 10.7(a) with greenstars and ® is plotted in Fig. 10.7(b). Sincethe green
stars are not below the straight line we have no entanglement in the example
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shown, i.e. we do not have ¾2 < · 2.
The reasonsfor the lack of entanglement is the subject of current investigation

and at the time of writing it would be mostly speculation to point at a speci¯c
problem. However, we know (without going into details here) that we have
not been aware of the full implications of the Stark shifted Larmor frequency
discussedaround Eq. (6.24). Also, the value of the ¯tting constant ® plotted
in Fig. 10.7(b) is roughly 50% of the ideal casetheoretical value · 2=(1 + · 2),
seeEq. (9.38). This indicates that the information provided by the ¯rst pulse
(A1; B1) is only \half as good" as we expect in the ideal case.

Yet another indication that we are further away from ideal measurements
that we would like is the fact that the noise variance of the secondpulse alone
(Var(A2) + Var(B2) minus shot noise) shown with red triangles in Fig. 10.7(a)
is at a higher level than the ¯rst pulse variances. This indicates either technical
noisepile up, decoherence,or maybe non-canceledback action. Further study is
required to understand the decoherencemechanismsbehind our data.

But we certainly do conclude that we are not far from observing the entan-
glement in the new setup. The measurement apparatus works well and supplies
us with useful information for understanding the decoherencemechanisms. We
also await the possibility to go to higher · 2 when our hot air heating system
is up running (we removed aluminum heating systemsfor reasonsdiscussedin
Sec.10.3).

10.5 Discussion of the Results

Let us discussand summarizethe results of this chapter. First of all, the experi-
mental results given in Sec.10.1 demonstrate the generation of entangled states
betweentwo macroscopiccesiumgassamples.This is the most important result
of this thesis. The created states have in the best casea variance ful¯lling

Var(Ĵy1 + Ĵy2) + Var(Ĵz1 + Ĵz2) · (64 § 7)% ¢2Jx (10.5)

which should be comparedto the entanglement criterion (9.3). The 64% = (100
- 36)% arise from the fact that the lowest points of Fig. 10.3(b) are 36% below
the CSSnoiselevel. This experimental estimate is an upper bound sincewe here
did not take into account the fact that the initial state is the CSS (this is the
di®erencebetweenEqs. (9.42) and (9.43)).

Our entanglement lives for at least 0.5mswhich is a relatively long life time
for atomic systems.With our old experimental setup this delay is controlled by a
chopper and we do not have much °exibilit y to test other delays betweenthe ¯rst
laser pulse creating the entanglement and the secondpulse necessaryto verify
the generation of an entangled state.

We note the fact that the entangled state is createdon demand,we perform a
measurement with a laser pulse and this inevitably drives the spin samplesinto
the entangled state. The mean values of Ĵy1 + Ĵy2 and Ĵz1 + Ĵz2 are random,
they will be distributed within the CSS variance and can be extracted from



108 Chapter 10 - Experiment al Genera tion of Ent angled St ates

the integrated photo current of the detectors measuring Ŝy . This is directly
implemented in the newer experiments. The meanvaluesare necessaryfor future
work like teleportation of atomic states(seeChap. 11). To createentangled states

with de¯nite mean values, e.g.
D

Ĵy1 + Ĵy2

E
=

D
Ĵz1 + Ĵz2

E
= 0, requires the

rotation of the spin state by e.g.a magnetic ¯eld. This is still to be implemented.
We have chosento rebuild the entanglement experiment to make it more suit-

able for future teleportation protocols,seeChap. 11. This includesthe separation
of vapour cells to larger distances,design and build up of new cell mounts and
magnetic shields, more complicated data acquisition and analysis, and installa-
tion of new vapour cells. This processhas involved many technical problemsand
challenges,a few interesting onesare discussedin Sec.10.3. With the new setup
we have reached the CSS noise level for weighted entanglement estimation, see
Fig. 10.7(a), or in other words, equality of the criterion (9.3) has been reached
and generation of entangled states should not be far away. This setup will also
enableus to perform detailed study of the decoherenceof entangled states since
we will be very °exible in the timing of laser pulses.
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CHAPTER 11

Quan tum Information Proto cols

In this chapter we discussvarious protocols for quantum communications pur-
poses, this includes the concept of teleportation which is the transport of an
unknown quantum state from one place (which we call Alice's place) to another
(which we call Bob's place). According to the no-cloning theorem [2] a quan-
tum state cannot be copied. As a result, in the teleportation processwe are not
allowed, even in principle, to obtain any information about the initial quantum
state to be teleported from Alice to Bob. If we obtain someof this information,
the exact sameinformation cannot be sent to Bob. This fact imposessomere-
strictions on the \handling" of the quantum states and we must follow a certain
protocol. A very important resourcein such protocols is the use of entangled
states, just like the oneswe demonstrate in Chap. 10.

A protocol for teleporting the state of a spin-1/2 system was discovered in
1993 [70] and di®erent experiments along these lines have been carried out [26,
27, 29]. Teleportation of continuous variables was proposedin 1994[71], and the
experimental demonstration of continuous variable teleportation for quadratures
of the electromagnetic ¯eld was demonstrated in [25]. Parts of the contents of
the present chapter has beenpublished in [IV].

Experimental studies of teleportation will in practical life have somelimita-
tions, therefore it is convenient to de¯ne the ¯delit y F as a ¯gure of merit for
the teleportation protocol

F = Average
¯
¯ ­

Ãin
¯
¯ Ãout ®̄̄2

or F = Average
­
Ãin

¯
¯ ½̂

¯
¯ Ãin ®

; (11.1)

wherethe input state is describedby the wave function
¯
¯Ãin

®
and the output state

by wave function jÃout i or in the caseof a mixed state by the density operator
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Figure 11.1: (a) The teleportation protocol. Alice has two spin samples1 and
3, the quantum state of sample 3 is unknown and we wish to teleport this to
Bob's sample2. First (marked with an arrow containing the number 1) entangle
sample 1 and 2 by a laser pulse. Next measurethe joint state of sample 1 and
3 by a similar laser pulse. Last we need by classicalcommunication to transfer
numbers A2 and B2 from Alice to Bob. This information is required to complete
the teleportation. (b) The ¯delit y F of the teleportation protocol as given by
Eq. (11.5). The F = 1=2 and F = 2=3 limit are reached by · 2 = 1:62 and
· 2 = 3:56, respectively.

½̂. The averageis performed over input states. If F = 1, then all input states
are teleported perfectly from Alice to Bob. To exceedthe limit F = 1=2 for any
coherent state we needquantum entanglement, hencethis is a boundary between
classicaland quantum communication [72]. If in addition the limit F = 2=3 is
reached we can be sure that the teleported state is the best existing \copy" of
the initial state [73].

11.1 Teleportation of an Unkno wn Spin State

Let us now turn to the protocols for teleportation of spin states. The analysis
of continuous variables teleportation for quadratures of light in realistic experi-
mental conditions is given in [74], here somecalculation methods for Gaussian
continuous variables are also outlined. A proposal for spin state teleportation
was given in [62] and in the following we review the basic principle behind.

Consider Fig. 11.1(a) where three vapour cells containing cesiumare drawn.
Cell 1 and 3 are placed at Alice's site while cell 2 is placed at Bob's site which
in principle can be far away. We prepare the atomic spins in thesethree cells in
coherent spin statesalong the x-axis asusual such that Jx 1 = Jx , Jx 2 = ¡ Jx , and
Jx 3 = ¡ Jx . Then two adjacent cells will be polarized along opposite directions.
The interesting quantum variables are as always Ĵy and Ĵz (we work in the
rotating frame but leave out the primes which will be used for other purposes
below) and the aim now is to teleport an unknown state of sample 3 described
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by operators Ĵy3 and Ĵz3 to sample2.
The ¯rst step is to entangle the spins in sample 1 and 2 by our well known

methods from Chaps. 9 and 10. We assumethe atomic to shot noise ratio to
be very large (· 2 À 1) such that we essentially perform perfect measurements.
Firing a laser pulse through cells 1 and 2 yields results

Ĵy1 + Ĵy2 = A1 and Ĵz1 + Ĵz2 = B1 (11.2)

which holds as operator equations for ideal measurements, sample1 and 2 have
changed from independent coherent states into a highly entangled state with
Var(Ĵy1 + Ĵy2) = Var(Ĵz1 + Ĵz2) ! 0.

The next step is to ¯re a similar laser pulse through sample 1 and 3 to
perform an ideal measurement of the spin components. We let primes denotethe
operators at a time after this secondmeasurement and the primelessoperators
refer to operators on spin states before the measurement. We have

Ĵy1 + Ĵy3 = Ĵ 0
y1 + Ĵ 0

y3 = A2 and Ĵz1 + Ĵz3 = Ĵ 0
z1 + Ĵ 0

z3 = B2: (11.3)

Note that back action noise is piled up in both spins 1 and 3 such that these
individual spins are changed dramatically, i.e. Ĵ 0

y1 = Ĵy1 + BAN and Ĵ 0
y3 =

Ĵy3 + BAN and similarly for z-components. Here BAN meansback action noise.
The sum of primed and unprimed operators are identical, this is the QND nature
of the measurement causedby the back action cancellation. We thus measure
the properties of the initial state of sample3 plus the entangled state of sample1
with sample2. At the sametime Ĵ 0

y2 = Ĵy2 and Ĵ 0
z2 = Ĵz2, there is no interaction

going on at sample2. Now, the ¯nal state of sample2 can be deducedby

Ĵ 0
y2 = Ĵy2 = A1 ¡ Ĵy1 = Ĵy3 ¡ (A2 ¡ A1);

Ĵ 0
z2 = Ĵz2 = B1 ¡ Ĵz1 = Ĵz3 ¡ (B2 ¡ B1):

(11.4)

Here Ĵy3 and Ĵz3 refer to the state of sample3 beforethe ¯ring of the secondlaser
pulse. The secondequalities hold as a consequenceof the initial entanglement
between sample 1 and 2, seeEq. (11.2). The third equalities follow from the
result of the secondQND measurement, seeEq. (11.3). We seethat to complete
the teleportation we needto add the numbers A2 ¡ A1 and B2 ¡ B1 to Ĵ 0

y2 and
Ĵ 0

z2, respectively, which can be done by suitable magnetic ¯elds. The numbers
A2 and B2 are completely random and without theseBob has no useof the spin
state of sample 2. For Bob to know these numbers we must establish classical
communication betweenAlice and Bob. The initial state of Alice's sample3 has
been destroyed by pile up of back action noise but has also been recreated in
Bob's sample2.

Note, the initial entanglement between samples 1 and 2 could have been
prepared while the cells were sitting next to each other. Then one samplecould
be moved far away, and the rest of the protocol could proceed. This approach
of course involves some technical problems (e.g. the magnetic ¯eld should be



112 Chapter 11 - Quantum Inf orma tion Pr otocols

carried together with the atomic sample). But it underlines the profound nature
of teleportation, when the entanglement has been established the rest is local
measurements and classicalcommunication.

The above considerationsare worked out for ideal measurements. For a ¯nite
atomic to shot noiseratio · 2 the analysis is covered by [62] which again relies on
the calculations in [74]. We will just state the result, the ¯delit y F is given by1

F = 1
Á µ

1 +
1

1 + · 2 +
1
· 2

¶
: (11.5)

We plot this quantit y in Fig. 11.1(b). To overcomethe threshold F = 1=2 we
need· 2 = 1:62. With · 2 = 3:56 we may break the F = 2=3 limit. We also note
that for · 2 À 1, Eq. (11.5) can be approximated by F ¼ 1 ¡ 2=· 2. Hence, to
obtain F ¸ 95% we need · 2 ¸ 40. We remind ourselves that thesecalculations
are resultsof a Gaussianwave function modeling which is similar to our pure state
considerationsfor entanglement generation in Sec.9.3. The only non-ideal factor
included in this approach is the fact that atomic to shot noiseis ¯nite (· 2 6= 1 ).
Hence, as experimentalists, given · 2 we should take the above equation as a
theoretical upper limit.

In the experimental demonstration of entanglement generation in Chap. 10
we estimated the varianceof the entangled state to be 64%of the CSSnoiselevel,
seeEq. (10.5). In this estimation, we neglectedthe knowledgeabout the initial
CSS which leads us to believe we created a state with variance (relativ e to the
CSS noise level) 1=· 2 rather than the more correct 1=(1 + · 2) of Eq. (9.38). If
we assumethat our estimate corresponds to and e®ective 1=· 2 = 64% we obtain
· 2 ¼ 1:6, i.e. we now model our operationally obtained entanglement at the real
· 2 ¼ 2:8 (seeFig. (10.3)) by a virtual but perfect experiment working at · 2 ¼ 1:6.
This e®ective · 2 is closeto the teleportation ¯delit y of F = 1=2.

The teleportation protocol is a very suitable extension to our experiment, in
addition to the magnetic ¯eld for adding A2 ¡ A1 and B2 ¡ B1 we essentially
have two laser beamssimilar to the one we applied for entanglement generation
in Chap. 10. Hence, in principle, the teleportation protocol with three cells is
straightforward to implement. However, as experimentalists we need to demon-
strate that the teleportation is successfulwith some¯delit y F . For this purpose
we would needto perform measurements on sample2 after the teleportation has
been completed. But with our rotating frame this is not straightforward, we
cannot measureand characterize a single spin component (Ĵy2 or Ĵz2) as we re-
marked in Sec.4.3. This fact motivated us to considera four cell protocol which
is described in the next section.

11.2 Entanglemen t Swapping

Let us consider the setup shown in Fig. 11.2(a). At Alice's site we place cells 1
and 3, and at Bob's site we placecells2 and 4. We createcoherent spin states in

1 In Eq. (3) of [62] we substituted 2· 2 ! · 2 to account for the rotating frame.
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Figure 11.2: (a) The four cell entanglement swapping protocol. Alice has two
spin samples1 and 3, and Bob has samples2 and 4. First we entangle sample1
with 2 and sample3 with 4 by two laser pulses. Next measurethe joint state of
sample1 and 3 by a similar laserpulse. Last we needby classicalcommunication
to transfer numbers A3 and B3 from Alice to Bob. If the measurement is ideal,
Bob can now use this information to rotate samples2 and 4 into an entangled
state with Ĵy2 + Ĵy4 = 0 and Ĵz2 + Ĵz4 = 0. (b) Given the atomic to shot noise
ratio · 2 the solid line shows the best obtainable varianceof the entangled state by
the protocol (calculated numerically). We seethat · 2 > 1 is required to observe
entanglement betweensamples2 and 4. The dashedline is the naive guess3=· 2

for the variance. At large valuesof · 2 the two lines agree.

all four samplesoriented such that Jx 1 = Jx 4 = Jx and Jx 2 = Jx 3 = ¡ Jx . Then
any two adjacent sampleshave opposite orientation and we may perform QND
measurements on any of these pairs. Now we wish to generate entanglement
betweensamples2 and 4 without direct interaction betweenthese. This is done
in the following manner where we assumeideal measurements (· 2 À 1).

First ¯re two laser pulsesmarked with the arrow (1) in Fig. 11.2(a). These
perform measurements

Ĵy1 + Ĵy2 = A1 and Ĵz1 + Ĵz2 = B1;

Ĵy3 + Ĵy4 = A2 and Ĵz3 + Ĵz4 = B2:
(11.6)

After this step sample 1 is entangled with sample 2 and sample 3 with sample
4. The next step is to shine a similar laser pulse (shown with arrow (2) in
Fig. 11.2(a)) through samples1 and 3 to measure

Ĵy1 + Ĵy3 = Ĵ 0
y1 + Ĵ 0

y3 = A3 and Ĵz1 + Ĵz3 = Ĵ 0
z1 + Ĵ 0

z3 = B3: (11.7)

In analogy with the previous section we let the primed operators refer to spin
states after the measurement on samples1 and 3, and we remember that the
individual samplese.g. Ĵ1y and Ĵy3 are destroyd by pile up of back action noise
while the sum of the two is conserved. Now let us considerour knowledgeabout



114 Chapter 11 - Quantum Inf orma tion Pr otocols

samples2 and 4. We have

Ĵ 0
y2 + Ĵ 0

y4 = Ĵy2 + Ĵy4 = (A1 ¡ Ĵy1) + (A2 ¡ Ĵy3) = A1 ¡ A2 ¡ A3;

Ĵ 0
z2 + Ĵ 0

z4 = Ĵz2 + Ĵz4 = (B1 ¡ Ĵz1) + (B2 ¡ Ĵz3) = B1 ¡ B2 ¡ B3:
(11.8)

This measurement doesnot involve samples2 and 4 which is the reasonfor the
¯rst equalities to hold above. The secondequalities follow from the entangle-
ment (11.6) created by the ¯rst laser pulses. The third equalities are valid as
a consequenceof the secondstep laser pulse (11.7). The numbers A1;2;3 and
B1;2;3 are completely random, but if Alice sendsthe values A3 and B3 to Bob
by classicalcommunication he is able to, as the ¯nal step of the protocol, add
¡ A1 + A2 + A3 and ¡ B1 + B2 + B3 to e.g. Ĵy4 and Ĵz4, respectively. We see
that we then arrive at Ĵy2 + Ĵy4 = 0 and Ĵz2 + Ĵz4 = 0 and a de¯nite entangled
state hasbeencreatedbetweensamples2 and 4 even though thesesamplesnever
interact directly. This is known as entanglement swapping.

Note, if we compareFigs. 11.1(a) and 11.2(a) the protocols are very similar.
We may considerthe four cell protocol asa teleportation experiment wheresam-
ple 3 is the unknown quantum state to be teleported to sample2. In Fig. 11.2(a)
this state just happens to be an entangled state together with sample 4. After
the completion of the protocol it is sample 2 which is entangled with sample 4,
an entangled state has beenteleported.

Now, the above considerationsare valid for perfect measurements, let us dis-
cuss what happens in the caseof a ¯nite atomic to shot noise ratio · 2. The
protocol works ¯ne in the rotating frame, and to measuree.g. Ĵy1 + Ĵy2 we recon-
sider Eq. (9.33). If we have no prior knowledgeabout the spin state of samples
1 and 2 and given the results A we could guess

Ĵy1 + Ĵy2p
Jx

=
2
·

Ã

A ¡
Z T

0
Ŝin

y (t) sin(­ t)dt

!

: (11.9)

This is just a rewriting of Eq. (9.33). The value of Ĵy1 + Ĵy2 is here the number
A plus some°uctuating quantit y (the integral). If we calculate the variance of
the above we get (the number A has variance zero)

Var
³

Ĵy1 + Ĵy2

´

Jx
=

1
a2Sx TJx

=
1
· 2 : (11.10)

Having three of thesekinds of measurements in the protocol leadsus to a naive
guessfor the uncertainty in the ¯nal state of Ĵy2 + Ĵy4 or Ĵz2 + Ĵz4 to be 3=· 2

in units of Jx . This is plotted in Fig. 11.2(b) as a dashedline. But we do not
have to be that naive, in the limit · 2 ! 0 this estimate approachesin¯nit y which
is wrong. With · ¿ 1 we hardly touch the spins and we know that we should
obtain the coherent spin state limit of unit y on the vertical axis of Fig. 11.2(b).
We extend the wave function modeling of Sec.9.3 to the four cell protocol. This
is very cumbersome and we get help from numerical methods. The result is
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shown as the solid line in the ¯gure, we seethat it reachesthe correct limits for
· 2 ! 0 and · 2 ! 1 . The interesting part is that with · 2 > 1 we are in principle
able to detect entanglement betweensamples2 and 4. The operational estimate
· 2 ¼ 1:6 of the previous section is well above this limit.

11.3 Quan tum Memory for Ligh t

In this section we investigate the possibility to teleport the quantum state of a
light pulseonto atomic spins,and later on teleport this state back to light. Read-
ing the intro duction in Secs.2.1 and 2.2 we de¯nitely seethat the polarization
state of a light pulseand the spin state of atoms are very similar, below we show
how the o®-resonant interaction can connect the two in a teleportation scheme.
To this end we need a source of entanglement between spin states or between
beams of light. The contents of this section is close to the ideas of Ref. [75]
which discussessimilar protocols.

Now, let usassumethat wearegivena light pulseof duration T in an unknown
quantum polarization state. We describe this pulse by Ŝin

y (t) and Ŝin
z (t) and the

relevant quantum variable is the collective property

X̂ in
L =

RT
0 Ŝin

y (t)dt
p

Sx T
and P̂ in

L =

RT
0 Ŝin

z (t)dt
p

Sx T
: (11.11)

This is similar to Eq. (2.10). As a resourceof entanglement we assumeto have
two ensembles1 and 2 of spins ful¯lling Ĵy1 + Ĵy2 = 0 and Ĵz1 + Ĵz2 = 0, i.e. they
are perfectly entangled. Like Eq. (2.4) we rede¯ne the spins as

X̂ A1 =
Ĵy1p

Jx
and P̂A1 =

Ĵz1p
Jx

;

X̂ A2 =
Ĵy2p

Jx
and P̂A2 = ¡

Ĵz2p
Jx

:

(11.12)

Now
h
X̂ ; P̂

i
= i for both light and the two atomic samples. The entanglement

condition (at time t = 0 reads) X̂ A1 (0) + X̂ A2 (0) = 0 and P̂A1 (0) ¡ P̂A2 (0) = 0.
In the following we assumeno static magnetic ¯eld, i.e. we are not in the rotating
frame. We let the incoming light propagate along the z-axis and let it interact
with the spin sample1. The equationsof motion (6.11) and (6.13) will with the
above de¯nitions transform into

X̂ out
L = X̂ in

L + · P̂A1 (0) and X̂ A1 (T) = X̂ A1 (0) + · P̂ in
L ;

X̂ A2 (T) = X̂ A2 (0) and P̂A2 (T) = P̂A2 (0):
(11.13)

Sample2 is unchanged, there is no interaction going on. If we put · = 1 we see
that the outgoing X̂ out

L contains information about the light pulse, X̂ in
L , and the

initial atomic state of sample1, P̂A1 (0). We measurethis light with outcome A
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such that A = X̂ in
L + P̂A1 (0). The remaining information (X̂ A1 (0) and P̂ in

L ) is
stored in the atoms. If we shine a strong light pulse along the y-direction with
· 2 À 1 we may perform a measurement of X̂ A1 (T) with outcome B , i.e. B =
X̂ A1 (0) + P̂ in

L . We may now consider the state of sample2,

X̂ A2 (T) = X̂ A2 (0) = ¡ X̂ A1 (0) = P̂ in
L ¡ B ;

P̂A2 (T) = P̂A2 (0) = P̂A1 (0) = ¡ X̂ in
L + A:

(11.14)

Now, if we add the numbers B and ¡ A to X̂ A2 and P̂A2 , respectively, we have
completed the teleportation P̂ in

L ! X̂ A2 and ¡ X̂ in
L ! P̂A2 .

Now, we could reversethe process,assumewe have two entangled beamsof
light and an unknown atomic quantum spin state. Calculations similar to the
above will shown that we also in this casemay teleport the spin state to the light
pulse. Hence,with both the possibility of writing a quantum state of light onto
atoms and reading out this state to another light pulse, we have a protocol for
a complete quantum memory. This result should be seenin connection to our
discussionin Sec.8.5.

We demonstrate in Chap. 10 how to generate an entangled state between
atomic spins. Also, in our laboratory others have demonstrated entanglement
between two beamsof light, see[37]. Hence, in principle we have everything at
hand to implement a full quantum memory. However, the above protocols do
not work in the rotating frame. Experimentally we prefer the rotating frame for
several reasons,seeSec.4.3, and a useful protocol is still to be found.

An alternativ e to quantum memory is the quantum cloner. An unknown co-
herent polarization state of light can be optimally clonedonto two oppositely ori-
ented spin statesby a singlepassageof the light through the two atomic samples
followed by a measurement [76]. This protocol requires no initial entanglement
betweenthe two spin samples.
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CHAPTER 12

Summary and Outlo ok

In this thesis we study the interaction betweenpolarization states of laser light
and ground spin states of atomic cesiumsamples. With strong laser pulsesand
macroscopicgas samplescontaining ¼ 1012 atoms our quantum mechanical de-
scription of the collective properties of light and matter becomesvery similar to
ordinary position X̂ and momentum P̂ of a single particle. This is also known
as continuous variable quantum systems. In this approximation the atoms and
light arevery similar from a mathematical point of view, and with an o®-resonant,
dispersive interaction we are able to couple these two di®erent physical systems
together.

In the limit of o®-resonant coupling we neglect all absorption e®ectsbut
calculate all dispersive e®ectsof the interaction between laser light and the real
hyper¯ne split ground state of cesium. This leads to an e®ective Hamiltonian
and to light/matter propagation equations. The calculations are then heavily
supported by experiments of both classical and quantum nature. During this
processwelearnedthat our physical systemsof light and atomsreally aresensitive
to the quantum °uctuations of each other. In particular we followed the quantum
°uctuations of a squeezedbeamof light into atomic degreesof freedomand back
onto light. This study brings optimism for possible future implementations of
e.g. quantum memory.

The o®-resonant atom/ligh t interaction also allows us to create entangled
states between two separate macroscopicatomic gas samples. We exploit the
fact that we can perform quantum non-demolition measurements on the joint
spin systemof two atomic samples.This will, on demand,drive the spin samples
into an entangled state. We perform a simple theoretical analysis of this and
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we demonstrate the generationof entangled states experimentally . The obtained
entanglement corresponds to a noise reduction of (36 § 7)% below the classical
limit, and the entangled state livesfor at least0.5ms. Experimental entanglement
generation is the most important result of this thesis.

It is feasibleto extend our experimental proceduresto teleportation protocols
with three or more atomic samples. Our operationally obtained entanglement
could optimistically lead to teleportation of an unknown quantum state with ¯-
delity close to the limit F = 1=2 which cannot be broken by classical means.
A four sample entanglement swapping experiment seemsfeasible, and our op-
erationally obtained entanglement should be su±cient to observe entanglement
created by a swapping protocol. The present work in the laboratory is directed
along theselines.

In addition to the important results relevant for future quantum information
and communication protocols we learned many aspects of atomic physics for the
practical characterization and utilization of atom/ligh t interactions for di®erent
purposes.With our e®ortson upgrading the experimental setup we also expect
to be able to study the dynamical evolution of entangled states.
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APPENDIX A

Polarization States of the Ligh t
Field

In this appendix we de¯ne our notation for Stokes operators, i.e. the operators
suitable to describe the polarization state of the light ¯eld. We will also discuss
vacuum noiseand lossesfor Stokesoperators.

A.1 The Quan tized Radiation Field

The quantization of the radiation ¯eld is well described in many text books and
we will here quote results from [77]. The electric ¯eld operator can be expressed

E = i
X

¸

r
¹h! ¸

2"0V

³
â¸ e¸ ei k ¸ ¢r ¡ ây

¸ e¤
¸ e¡ i k ¸ ¢r

´
: (A.1)

Here¸ runs over all modes,i.e. over all directions in k-spaceand all polarizations.
The vector k ¸ describes the direction of propagation, the angular frequency is
given by ! ¸ = cjk ¸ j, and the complex unit vector e¸ describes the direction of
polarization. The vector e¸ is perpendicular to k ¸ for all ¸ , or in other words,
it is the transversepart of the ¯eld which is described above. The creation and
annihilation operators â¸ and ây

¸ ful¯l the commutation relation
h
â¸ ; ây

¸ 0

i
= ±̧ ¸ 0: (A.2)

We will make a few simpli¯cations to (A.1). We assumethat the ¯eld is propa-
gating in the positive z-direction and that the transverseextent of the beam is
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much larger than an optical wavelength. In this casea one-dimensionaltheory is
su±cient. The transversecrosssection will be denoted A and the quantization
volume is then V = A ¢L, where we quantize the beam over a spatial distance L
along the z-axis. We will also make an overall phasechange1 to get rid of the i
in front of E . Now the electric ¯eld may be written

E =
X

¸

r
¹h! ¸

2"0AL

³
â¸ e¸ eik ¸ z + ây

¸ e¤
¸ e¡ ik ¸ z

´
: (A.3)

The Hamiltonian describing the radiation ¯eld is given by

ĤR =
X

¸

¹h! ¸

µ
ây

¸ â¸ +
1
2

¶
: (A.4)

A.2 Stok es Op erators

To intro duce the notation of Stokes operators it will su±ce to consider only a
single longitudinal mode of (A.3) with wave vector k. We explicitly specify the
directions of polarization along x; y or + ; ¡ by

Ek =

r
¹h!

2"0AL

¡
[âx ex + ây ey ]eik z + [ây

x ex + ây
y ey ]e¡ ik z¢

=

r
¹h!

2"0AL

³
[â+ e+1 + â¡ e¡ 1]eik z + [ây

+ e¤
+1 + ây

¡ e¤
¡ 1]e¡ ik z

´
:

(A.5)

In the ¯rst line ex and ey are unit vectors along the x- and y-directions with
corresponding creation and annihilation operators âx , ây , ây

x , and ây
y . In the

secondline the unit vectors e§ 1 are de¯ned by

e+1 = ¡
ex + ieyp

2
and e¡ 1 =

ex ¡ ieyp
2

: (A.6)

This particular de¯nition ensuresthat â+ is the annihilation operator of a ¾+ -
polarized photon and so on. This choice of linear and circular unit vectors ¯xes
the relation betweenlinear and circular creation and annihilation operators,

â+ = ¡
âx ¡ i âyp

2
and â¡ =

âx + i âyp
2

: (A.7)

Now, the Stokesoperators are de¯ned by

Ŝx =
1
2

¡
ây

x âx ¡ ây
y ây

¢
= ¡

1
2

³
ây

+ â¡ + ây
¡ â+

´
; (A.8)

Ŝy =
1
2

¡
ây

x ây + ây
y âx

¢
= ¡

1
2i

³
ây

+ â¡ ¡ ây
¡ â+

´
; (A.9)

Ŝz =
1
2i

¡
ây

x ây ¡ ây
y âx

¢
=

1
2

³
ây

+ â+ ¡ ây
¡ â¡

´
; (A.10)

1This is just a convention. This particular way of de¯ning the ¯elds is common in the
quantum optics literature.
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wherewehave the operators in both the x; y and the + ; ¡ basis. Ŝx is the number
of photons polarized along ex minus the number of photons polarized along ey ,
Ŝy is the number of photons polarized along e+45 = (ex + ey )=

p
2 minus the

number of photons polarized along e¡ 45 = (ex ¡ ey )=
p

2, and ¯nally , Ŝz counts
the photon di®erencebetween¾+ and ¾¡ polarization. In the circular basis we
may ¯nd it useful to express

Ŝ+ = Ŝx + i Ŝy = ¡ ây
+ â¡ ;

Ŝ¡ = Ŝx ¡ i Ŝy = ¡ ây
¡ â+ :

(A.11)

We may also de¯ne the total photon number Á̂ by

Á̂ = ây
x âx + ây

y ây = ây
+ â+ + ây

¡ â¡ : (A.12)

The Stokesoperators de¯ned asabove satisfy the usual angular momentum com-
mutation relations

h
Ŝj ; Ŝk

i
= i² j k l Ŝl and

h
Ŝz ; S§

i
= § Ŝ§ (A.13)

which can be derived from the commutation relations for for the ¯eld opera-
tors (A.2). All Stokesoperators commute with Á̂.

A.3 Strong, Linearly Polarized Ligh t

In our experiments we often use a linearly polarized beam of light with strong
intensity. If the light is polarized along the e.g. x-axis we may treat operators
âx and ây

x as numbers, we make an overall phasechoice such that âx ! Ax and
ây

x ! Ax with Ax real. Then we write

Ŝx ¼ Sx =
A2

x

2
;

Ŝy ¼
Ax

2

¡
ây + ây

y

¢
;

Ŝz ¼
Ax

2i

¡
ây ¡ ây

y

¢
:

(A.14)

We seethat the quantum properties of the Stokes operators of light in this ap-
proximation solely are governed by the light in the y-polarized mode.

A.4 Stok es Op erators and Losses

We¯nalize this appendix by calculating how the Stokesoperators transform when
the light is subject to lossesof magnitude 1¡ ´ , i.e. the fraction ´ of the photons
survive. We continue to assumethe approximation of a strong, x-polarized beam.
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â

b̂ (vacuum)

Ŝx;y ;z Ŝ0
x;y ;z

p
´ â +

p
1 ¡ ´ b̂

´

Figure A.1: Lossesare modeled by a beam splitter with re°ection ´ . This at-
tenuates the input ¯eld â and admixes the vacuum component b̂ to the output
¯eld.

As shown in ¯gure A.1, we model the lossesby a beamsplitter with transmission
´ which mixes a vacuum ¯eld b̂, b̂y with the incoming ¯eld â, ây. We denote
the incoming Stokes operators Ŝx;y ;z , and the outgoing operators Ŝ0

x;y ;z . We
shall also assumethat all Stokesoperators are normalized to photons per second
(along the lines of App. C). A calculation shows that

S0
x = ´ Sx ;

Ŝ0
y (t) = ´ Ŝy (t) +

r
´ (1 ¡ ´ )Sx

2
¢V̂y (t);

Ŝ0
z (t) = ´ Ŝz (t) +

r
´ (1 ¡ ´ )Sx

2
¢V̂z (t):

(A.15)

We have intro duced the vacuum operators V̂y (t) = b̂(t) + b̂y(t) and V̂z (t) =
¡ i (b̂(t) ¡ b̂y(t)) which ful¯l

D
V̂y (t)V̂y (t0)

E
=

D
V̂y (t)V̂y (t0)

E
= ±(t ¡ t0);

D
V̂y (t)V̂z (t0)

E
= ¡

D
V̂z (t)V̂y (t0)

E
= i±(t ¡ t0):

(A.16)

We seefrom (A.15) that all the Stokes operators are attenuated by a factor ´
and that the quantum variables Ŝy and Ŝz in addition are mixed with an extra
noisesourcewhich must be there to preserve commutation relations.
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APPENDIX B

Spins and Densit y Op erators

Throughout this thesis we will ¯nd it useful to expressspin operators in terms
of density operators. We will be speci¯cally motivated for describing the spin
state of a collection of atoms in a hyper¯ne multiplet of the ground state of
cesium. In this appendix we consider a spin operator j within a multiplet such
that j 2 = F (F + 1) with ¹h = 1. For cesiumwe have for the ground state F = 3
or F = 4. The connection between spin and density operators is very useful
for the derivation of the Hamiltonian (5.18) since we found density operators
convenient in the derivation processand spin operators more intuitiv e in the
¯nal Hamiltonian. Also, as we discussin Sec.4.3, atoms are oriented along a
magnetic ¯eld leading to Larmor precession. Expressing density operators in
the energy eigen basis (along the x-axis) will reveal the importance of di®erent
frequencycomponents.

B.1 Quan tization Along the z-axis

Describing the (2F + 1)-dimensional sub spaceof a hyper¯ne multiplet requires
¯rst of all a choice of quantization axis. In the following we will take this as the
z-axis. In the eigenbasisof |̂ z we know from any elementary book on quantum
mechanics that

|̂ z jmi = m jmi and |̂ § jmi =
p

F (F + 1) ¡ m(m § 1) jmi ;



124 Appendix B - Spins and Density Opera tors

where |̂ § = |̂ x § i |̂ y . In the languageof density operators ¾̂j k = jj i hkj we then
get

|̂ x =
1
2

X

m

p
F (F + 1) ¡ m(m + 1)(¾̂m +1 ;m + ¾̂m;m +1 ); (B.1)

|̂ y =
1
2i

X

m

p
F (F + 1) ¡ m(m + 1)(¾̂m +1 ;m ¡ ¾̂m;m +1 ); (B.2)

|̂ z =
X

m

m¾̂m;m ; (B.3)

|̂ + =
X

m

p
F (F + 1) ¡ m(m + 1)¾̂m +1 ;m ; (B.4)

|̂ ¡ =
X

m

p
F (F + 1) ¡ m(m + 1)¾̂m;m +1 : (B.5)

By combining the above we can continue to ¯nd higher order moments of the
spin in terms of density operators, e.g.

|̂ 2
z =

X

m

m2¾̂m;m ; (B.6)

|̂ 2
+ =

X

m

p
(F ¡ m)(F + m)(F + 1 + m)(F + 1 ¡ m)¾̂m +1 ;m ¡ 1; (B.7)

|̂ 2
¡ =

X

m

p
(F ¡ m)(F + m)(F + 1 + m)(F + 1 ¡ m)¾̂m ¡ 1;m +1 : (B.8)

B.2 Quan tization Along the x-axis

We will also considerspin operators expressedas a function of density operators
when quantized along the x-axis. The main motivation for this is the fact that we
experimentally orient the atomic spins along the x-direction such that ĥ| x i ¼ F
(or the opposite direction with ¡ F ). If F = 4 for instance we may in this case
assumethat the only important density matrix operators are (when quantized
along the direction of orientation) ¾̂44, ¾̂34, ¾̂43, and ¾̂33 sinceall the rest will be
much smaller. Furthermore, in this basisand in the presenceof a magnetic ¯eld,
the diagonal elements will be constant, the ¯rst o®-diagonalelements will rotate
with Larmor frequency ­, the secondo®-diagonalelements at 2­, an so on.

The easiestway to expressspin operators in the rotated basis along x is to
make a cyclic permutation of x; y; z-indices of the spin operators and then refer
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to known results of Sec.B.1. In this way we obtain for the spin components

|̂ x =
X

m

m¾̂m;m ; (B.9)

|̂ y =
1
2

X

m

p
F (F + 1) ¡ m(m + 1)(¾̂m +1 ;m + ¾̂m;m +1 ); (B.10)

|̂ z =
1
2i

X

m

p
F (F + 1) ¡ m(m + 1)(¾̂m +1 ;m ¡ ¾̂m;m +1 ); (B.11)

and we also list somehigher order components like

|̂ y |̂ z + |̂ z |̂ y =
1
2i

X

m

p
(F ¡ m)(F + m)(F + 1 + m)(F + 1 ¡ m)

£ (¾̂m +1 ;m ¡ 1 ¡ ¾̂m ¡ 1;m +1 ) ¼ 0; (B.12)

|̂ x |̂ y + |̂ y |̂ x =
1
2

X

m

p
F (F + 1) ¡ m(m + 1)(2m + 1)(¾̂m +1 ;m + ¾̂m;m +1 )

¼ ¾j x (2F ¡ 1)|̂ y ; (B.13)

|̂ x |̂ z + |̂ z |̂ x =
1
2i

X

m

p
F (F + 1) ¡ m(m + 1)(2m + 1)(¾̂m +1 ;m ¡ ¾̂m;m +1 )

¼ ¾j x (2F ¡ 1)|̂ z ; (B.14)

where ¾j x is the sign of j x . The last terms above are approximations valid for
jĥ| x i j ¼ F . The approximations of Eqs. (B.13) and (B.14) can be derived by
comparisonto Eqs. (B.10) and (B.11) and maintaining only the most important
terms.

Under the sameapproximation we have |̂ 2
x ¼ F 2 and |̂ 2

y ¼ |̂ 2
z ¼ F=2 which is

seenfrom the relation j 2 = F (F + 1). Hencewe can also state that

¡
|̂ 2
x ¡ |̂ 2

y

¢
¼

¡
|̂ 2
x ¡ |̂ 2

z

¢
¼ F

µ
F ¡

1
2

¶
: (B.15)

B.3 Comm utators

When deriving equations of motion for spins we need to calculate commutators
betweendi®erent spin operators. In this sectionwe state the results for the most
important onesusedin this thesis. Starting out from the well known

[|̂ x ; |̂ y ] = i |̂ z ; (B.16)

and with the cyclic permutations thereof, we derive
£
|̂ x ; |̂ 2

¡

¤
= +( |̂ x |̂ z + |̂ z |̂ x ) ¡ i (|̂ y |̂ z + |̂ z |̂ y ); (B.17a)

£
|̂ x ; |̂ 2

+

¤
= ¡ (|̂ x |̂ z + |̂ z |̂ x ) ¡ i (|̂ y |̂ z + |̂ z |̂ y ); (B.17b)

£
|̂ x ; |̂ 2

z

¤
= ¡ i (|̂ y |̂ z + |̂ z |̂ y ); (B.17c)
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£
|̂ y ; |̂ 2

¡

¤
= ¡ i (|̂ x |̂ z + |̂ z |̂ x ) ¡ (|̂ y |̂ z + |̂ z |̂ y ); (B.18a)

£
|̂ y ; |̂ 2

+

¤
= ¡ i (|̂ x |̂ z + |̂ z |̂ x ) + (|̂ y |̂ z + |̂ z |̂ y ); (B.18b)

£
|̂ y ; |̂ 2

z

¤
= + i (|̂ x |̂ z + |̂ z |̂ x ); (B.18c)

£
|̂ z ; |̂ 2

¡

¤
= ¡ 2|̂ 2

¡ ; (B.19a)
£
|̂ z ; |̂ 2

+

¤
= +2 |̂ 2

+ ; (B.19b)
£
|̂ z ; |̂ 2

z

¤
= 0: (B.19c)
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APPENDIX C

Con tin uous Description of Ligh t
and Matter

We will in this sectionbrie°y summarizesomeimportant aspectsof light/matter
interactions. This includes a continuum description of the quantized radiation
¯eld and spatially continuousdescription of matter. The results in this appendix
are well known to many people(especially theorists) and we may ask, why then
usespaceto derive the results again? The reasonis that (for an experimentalist)
it is di±cult to quickly dig up all the results from the literature. Furthermore,
someof theseresults are so simple that nobody cared to write about it in a text
book! The results in this appendix should help giving an overview to someof the
theory neededin this thesis. The derivations are heavily inspired by [77, 78, 79].

C.1 Con tin uous Description of the Electromag-
netic Field

We start out from the quantized electric ¯eld (A.3) in one dimension. For peda-
gogic reasonswe only care about one polarization mode, e.g. the x-polarization
of the electric ¯eld. Then we may write

E =
X

¸

r
¹h! ¸

2"0AL

¡
âeik ¸ z + âye¡ ik ¸ z¢

: (C.1)
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In this equation the electric ¯eld is quantized along a line of length L . Imposing
periodic boundary conditions implies a discrete resolution in k-spacewith reso-
lution ¢ k = 2¼=L. The resolution is going toward zero for L ! 1 and this is
the transition we want to make in the following. We needto make the change

X
¢ k !

Z
dk:

To do so, we de¯ne the operator

â(k) =
â¸p
¢ k

with k ¼ k¸ : (C.2)

In this way Eq. (C.1) becomes

E =
X

¸

p
¢ k

r
¹h! ¸

2²0L ¢A

¡
â(k¸ )eik ¸ z + ây(k¸ )e¡ ik ¸ z¢

=
X

¸

¢ k

r
¹h! ¸

4¼²0A

¡
â(k¸ )eik ¸ z + ây(k¸ )e¡ ik ¸ z¢

!
Z

dk

r
¹h!

4¼²0A

¡
â(k)eik z + ây(k)e¡ ik z¢

; (! = kc):

(C.3)

The operators â(k) and ây(k) are now continuousasa function of k and they have
units of square root meters. We will now derive the appropriate commutation
relation. Consider the sum

1 =
X

¸ 0

h
â¸ ; ây

¸ 0

i
=

X

¸ 0

¢ k

"
â¸p
¢ k

;
ây

¸ 0

¢ k

#

!
Z

dk0£
â(k); ây(k0)

¤
:

Theserelations hold true whenever the sum of ¸ 0 includes ¸ , or equivalently , for
all rangesof integration over k0 including k. We conclude

£
â(k); ây(k0)

¤
= ±(k ¡ k0): (C.4)

In the continuous description the free ¯eld Hamiltonian (A.4) will turn into

ĤR =
Z

dk ¹hck
µ

ây(k)â(k) +
1
2

¶
: (C.5)

We seethat ây(k)â(k)dk should be interpreted asnumber of photons which have
wave vector in the range [k; k + dk].

C.2 Spatial Description of the Electric ¯eld

Up until now the electromagnetic ¯eld has been described in reciprocal space,
i.e. in k-space. This is the natural way to deal with Maxwell's equations. It is
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possiblethough to givea description in z-spaceby de¯ning the Fourier transforms

â(z; t) =
1

p
2¼

Z 1

¡1
â(k; t)eik zdk and ây(z; t) =

1
p

2¼

Z 1

¡1
ây(k; t)e¡ ik zdk:

(C.6)
Note, we now explicitly choose to work in the Heisenberg picture and we re-
mind ourselvesof the time-dependenceby making the operators a function of t.
Also, the last line of (C.3) assumespositive k-values. Making the Fourier trans-
form above from ¡1 to 1 is thus strictly not correct sinceit incorporates wave
vectors traveling in the negative z-direction. However, if we make the rotating
wave approximation in someband around a carrier frequencythe error is negligi-
ble. Our particular way of de¯ning the Fourier transform leads to the following
commutation relation for the spatial operators

£
â(z; t); ây(z0; t)

¤
= ±(z ¡ z0): (C.7)

The dimensionof â(z; t) and ây(z; t) is 1=
p

length and the physical interpretation
is that ây(z; t)â(z; t)dz is the number of photons in the spacebetweenz and z+ dz.

The time-dependenceof â(z; t) follows Heisenberg's equation of motion. We
decomposethe full Hamiltonian into three parts Ĥ = ĤR + Ĥatoms + Ĥ in t where
ĤR describes the pure radiation ¯eld, Ĥatoms describes the matter independent
of light ¯elds, and Ĥ in t is the interaction Hamiltonian. Since the light ¯eld
commutes with Ĥatoms we get

@
@t

â(z; t) =
1

p
2¼

Z
@
@t

â(k; t)eik zdk =
1

p
2¼

Z
1
i ¹h

h
â(k; t); ĤR + Ĥ in t

i
eik zdk:

Calculating the commutator with the pure radiation part ĤR leadsto
h
â(k; t); ĤR

i
=

Z
dk0 ¹hck0£

â(k; t); ây(k0; t)
¤

â(k0; t) = ¹hck â(k; t);

where (C.4) has beenusedin the last step. Since

1
p

2¼

Z
ik â(k; t)eik zdk =

@̂a(z; t)
@z

;

the above equations reduceto
µ

@
@t

+ c
@
@z

¶
â(z; t) =

1
i ¹h

h
â(z; t); Ĥ in t

i
: (C.8)

We have now derived a convenient way to describe how the light ¯eld is a®ected
by atoms through the interaction Ĥ in t . Now, if we restrict the radiation ¯eld to
a narrow band we get a strong motivation for the Fourier transformation of the
electric ¯eld into z-space. In this casein Eq. (C.3) we have ! ¼ ! 0 where ! 0 is
the carrier frequencyof e.g. a laser beam. Then

E =
Z

dk

r
¹h! 0

4¼²0A

¡
â(k; t)eik z + ây(k; t)e¡ ik z¢

=

r
¹h! 0

2²0A

¡
â(z; t) + ây(z; t)

¢
:

(C.9)
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We seethat â(z; t) can directly be interpreted as the amplitude of the electric
¯eld at position z at time t. A ¯nal remark in this section is that in free space
the time and spacedependenceis trivial, we may here excludethe z-dependence
altogether since â(z; t) = â(0; t ¡ z=c). If we (relativ e to somepoint in spaceof
our choice) make the de¯nition

â(t) =
p

c ¢â(z; t); (C.10)

and the samefor ây(t), we get operators that are normalized such that ây(t)â(t)
is the °ux of photons at time t which is convenient for the description of a laser
beam incident on a detector for instance. For light in the vacuum state we have

£
â(t); ây(t0)

¤
= ±(t ¡ t0): (C.11)

C.3 Con tin uous Matter Op erators

When describing the interaction of light with matter it is convenient to express
both the electric ¯eld and the atoms as a function of the spacecoordinate z. To
illustrate this we assumethat we have a collection of two-level atoms coupled
to the light by a dipole transition. The generalization to more atomic levels is
obvious. We will denote the ground and excited state of the atom by jgi and jei ,
respectively.

Making the dipole approximation, the Hamiltonian describing the interaction
is [77]

Ĥ in t = ¡
X

j

d j ¢E(R j ); (C.12)

where d j = ¡ er j is the dipole operator for the j 'th atom and R j is the location
of the j 'th atom. If we still consider light linearly polarized along x and make
the rotating wave approximation, the interaction Hamiltonian is

Ĥ in t =

r
¹h! 0

2²0A

X

j

³
d¤¾̂( j )

eg â(zj ; t) + d¾̂( j )
ge ây(zj ; t)

´
: (C.13)

We sum over atoms, zj is the position of the j 'th atom, and we have intro duced
the (dimensionless)density operator ¾̂ge = jgi hej. The dipole moment is de¯ned
by d = ehgj x jei . The above Hamiltonian is well known from text books (see
e.g. [80]), for the j 'th atom the operator ¾̂( j )

eg may changethe atomic state from
jgi to jei while the operator â(zj ; t) annihilates a photon at position zj . The
strength of this processis governed by the dipole moment d¤.

Instead of assigning a number j to every atom it is convenient to use the
position z as the index. If ½is the density of atoms we may de¯ne ¾̂ge(z; t) such
that

¾̂ge(z; t) =
1

½Adz

X

zj 2 [z;z + dz ]

¾̂( j )
ge (t); (C.14)
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whereA is the transverseextent of the atoms. Note that since½Adzis the number
of atoms in the slice[z; z+ dz] the operator ¾̂ge(z; t) is the (dimensionless)density
operator for an atom picked out from this slice. With this de¯nition, Eq. (C.13)
can be written

Ĥ in t =

r
¹h! 0

2²0A

Z L

0

¡
d¤¾̂eg(z; t)â(z; t) + d¾̂ge(z; t)ây(z; t)

¢
½Adz; (C.15)

where the integral runs over the sample length L . We have now obtained a
convenient way to describe the interaction Hamiltonian for light coupled to a
collection of two-level atoms. For instance, propagation equations through the
sampleare easily found by combining (C.7), (C.8) and (C.15),

µ
@
@t

+ c
@
@z

¶
â(z; t) = ¡ ig½Â¾ge(z; t); (C.16)

where g =
p

! 0=2²0¹hAd. Together with the Heisenberg equation of motion
for ¾̂ge(z; t) we have the coupled quantum Maxwell-Bloch equations describing
light/matter interactions. To ¯nd the time evolution of the density operator
¾̂ge(z; t) we must calculate commutators of density operators. From Eq. (C.14)
we can in generalshow that

[¾̂¹º (z; t); ¾̂¹ 0º 0(z0; t)] =
1

½A
(¾̂¹º 0(z; t)±º ¹ 0 ¡ ¾̂¹ 0º (z; t)±º 0¹ ) ±(z ¡ z0): (C.17)

A ¯nal remark in this sectionis the extensionof the above into the spin language.
If weconsiderdensity operatorsamongground state levelsin a hyper¯ne multiplet
as in App. B we can expressfor instance the |̂ z operator as a function of z, i.e.

|̂ z (z; t) =
X

m

m¾̂m;m (z; t): (generalizedB.3)

This can be done with all spin operators. We still have dimensionlessoperators
with usual expectation values (i.e. ĥ| z (z; t)i is in the range ¡ F to F ). The
commutation relation will be modi¯ed in the following way

[|̂ x (z; t); |̂ y (z0; t)] = i |̂ z (z; t) ¢
1

½A
±(z ¡ z0); (C.18)

that is the commutation relations from Sec.B.3 all hold but with the addition of
the z-dependenceand the factor ±(z ¡ z0)=½A.
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APPENDIX D

Dip ole Matrix Elemen ts

In this thesis we need to calculate the strength of di®erent optical transitions
betweenthe ground state 6S1=2 and the excited state 6P3=2 multiplets in cesium.
This is to a great extent a problem of tensor algebra and someof the following
equationscan be found in e.g. [81].

D.1 Calculating Matrix Elemen ts

The energy levels of a cesiumatom are well described by the total angular mo-
mentum F = J + I where J is the total electronic angular momentum and I is
the nuclear spin. However, the dipole interaction of an optical transition only
interacts with the electronic degreesof freedomand we end up with the problem
of calculating matrix elements of the kind h®J I F mF j r q j®0J 0I F 0m0

F i wherer q is
a spherical tensor component acting on the J -part of the matrix element, I = 7=2
is the nuclear spin, J = 1=2 is the ground state electron angular momentum and
J 0 = 3=2 is the excited state electronic angular momentum. This situation is well
known and the result is

h®J I F mF jr ¡ qj ®0J 0I F 0m0
F i = (D.1)

(¡ 1)F 0+ m 0
F ¡ m F hF mF 1qjF 0m0

F i
p

2F + 1
½

F F 0 1
J 0 J I

¾
h®0J 0kr k ®J i ;

where q = 0; § 1 is the tensor component index, hF mF 1qjF 0m0
F i is a Clebsch-

Gordan coe±cient, the curly brackets is a 6j -symbol, and h®0J 0kr k ®J i is the
reducedmatrix element.
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We wish to calculate the latter in terms of the inverselife time of the 6P3=2

levels. The easiest is to consider the upper F 0 = 5, m0
F = 5 state which can

only decay by spontaneousemissionto the lower F = 4, mF = 4 state. We will
¯rst calculate the probabilit y of emitting a photon along the direction k with
polarization e( j ) , where we parametrize k and e( j ) , j = 1; 2 by

k =

0

@
k sinµcosÁ
k sinµsinÁ

k cosµ

1

A ; e(1) =

0

@
sinÁ

¡ cosÁ
0

1

A ; e(2) =

0

@
¡ cosµcosÁ
¡ cosµsinÁ

sinµ

1

A : (D.2)

Note that these three vectors are mutually orthogonal and real. To go on we
needthe interaction Hamiltonian betweenthe radiation ¯eld and the atom. This
is

Ĥ in t = er ¢
X

¸;j

r
¹h! ¸

2²0V
e( j )

¸

³
â¸j ei k ¸ ¢r + ây

¸j e¡ i k ¸ ¢r
´

(D.3)

which is simply minus the scalar product of the quantized radiation ¯eld (A.1)
and the dipole operator d = ¡ er of oneatom. The two polarizations are indexed
by j and ¸ is running over all directions in space.

With the initial state ji i = j®0J 0I F 0m0
F i jnk j = 0i characterizing the up-

per state with J 0 = 3=2, F 0 = 5, m0
F = 5, and no photons in the mode

propagating along k with polarization along e( j ) , and the ¯nal state jf i =
j®J I F mF i jnk j = 1i where J = 1=2, F = 4, mF = 4, and one photon is present
in the mode kj , the transition matrix element is given by (in the dipole approx-
imation)

D
f

¯
¯
¯Ĥ in t

¯
¯
¯ i

E
= e

r
¹h! ¸

2²0V

D
®J I F mF

¯
¯
¯e( j ) ¢r

¯
¯
¯ ®0J 0I F 0m0

F

E

= ¡ e

r
¹h! ¸

2²0V
h®J I 44jr ¡ 1j ®0J 0I 55i (e( j ) ¢e+1 ):

(D.4)

In the last equality we usethe fact that only the r ¡ 1 component will contribute
to the ¢ mF = +1-transition and that we can write r = ¡ e+1 r ¡ 1 + e0r 0 ¡ e¡ 1r+1 .
Now, the transition rate ¡ is found by Fermi's golden rule

¡ =
2¼
¹h

¯
¯
¯
D

f
¯
¯
¯Ĥ in t

¯
¯
¯ i

E¯
¯
¯
2

½(E): (D.5)

The density ½(E) of ¯nal photonic states is

½(E) =
V ¢E 2 ¢d­

(2¼¹hc)3 =
V ¢! 2 ¢d­

(2¼c)3¹h
: (D.6)

Thus we ¯nd the rate into the solid angle d­ along k with polarization e( j )

¡(­) =
2¼
¹h

µ
¹h! e2

2²0V

¯
¯
¯e( j ) ¢e+1

¯
¯
¯
2

jh®J I 44jr ¡ 1j ®0J 0I 55i j2
¶

V ! 2d­
(2¼c)3¹h

=
! 3e2

32¼2¹hc3²0

¯
¯
¯e( j ) ¢e+1

¯
¯
¯
2

jh®0J 0kr k ®J i j2 d­ ;

(D.7)
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where we in the last step usedEq. (D.1) with appropriate valuesfor F , mF , F 0,
m0

F , J . and J 0 (the Clebsch-Gordan coe±cient is unit y while the 6j -symbol is
1/6). Now, the total decay rate is found by summingover j = 1; 2 and integrating
­ over 4¼. By using the de¯nitions (D.2) and (A.6) we ¯nd

e(1) ¢e+1 =
i

p
2

eiÁ and e(2) ¢e+1 =
cosµ
p

2
eiÁ ; (D.8)

and we deduce

¯
¯
¯e(1) ¢e+1

¯
¯
¯
2

+
¯
¯
¯e(2) ¢e+1

¯
¯
¯
2

=
1 + cos2 µ

2
)

Z

4¼

µ ¯
¯
¯e(1) ¢e+1

¯
¯
¯
2

+
¯
¯
¯e(2) ¢e+1

¯
¯
¯
2
¶

d­ =
8¼
3

:
(D.9)

With this result at hand we have the total decay rate

° =
e2

4¼²0¹hc
! 3

3c2 jh®0J 0kr k ®J i j2 ; (D.10)

and isolating the reducedmatrix element we get

¯
¯­ 6P3=2 kr k 6S1=2

®̄̄2
=

3c2°
®! 3 : (D.11)

Here ° = 2¼¢5:21MHz is the FWHM line width of the 6P3=2 states in cesium
measuredin radians per second,and ! is the angular frequency of the 852nm
D2-line. c is the speed of light and ® is the ¯ne structure constant. All matrix
elements can now be deducedin absolute units from (D.1) and (D.11).

D.2 Dip ole Coupling Constan ts

In Sec.5.2wespeci¯cally needto calculatenumberslike(g§
F ;m ;F 0;m 0)2 and (g+

F ;m ;F 0;m 0)¢
(g¡

F ;m ;F 0;m 0), where g§
F ;m ;F 0;m 0 is de¯ned in the discussionaround Eq. (5.5). The

calculation is straightforward from the above results and from the Clebsch-
Gordan coe±cients and 6j -symbols of Tab. D.1. We get for the squaredcoupling
constants

(g§
F ;m ;F 0;m § 1)2 =

c°
4A

¸ 2

2¼
1

3360

8
>>>>>><

>>>>>>:

240m2 ¨ 1200m + 1440 F = 3; F 0 = 2
¡ 315m2 ¨ 315m + 3780 F = 3; F 0 = 3

75m2 § 675m + 1500 F = 3; F 0 = 4
35m2 ¨ 245m + 420 F = 4; F 0 = 3

¡ 147m2 ¨ 147m + 2940 F = 4; F 0 = 4
112m2 § 1232m + 3360 F = 4; F 0 = 5

:

(D.12)
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For the crossterms we get for F = 3

(g+
F ;m ¡ 1;F 0;m ) ¢(g¡

F ;m +1; F 0;m ) =
c°
4A

¸ 2

2¼

p
(3 + m)(4 + m)(3 ¡ m)(4 ¡ m)

£
1

3360

8
<

:

240 F = 3; F 0 = 2
¡ 315 F = 3; F 0 = 3

75 F = 3; F 0 = 4
;

(D.13)

and for F = 4 we have

(g+
F ;m ¡ 1;F 0;m ) ¢(g¡

F ;m +1; F 0;m ) =
c°
4A

¸ 2

2¼

p
(4 + m)(5 + m)(4 ¡ m)(5 ¡ m)

£
1

3360

8
<

:

35 F = 4; F 0 = 3
¡ 147 F = 4; F 0 = 4
112 F = 4; F 0 = 5

:
(D.14)

It is worth mentioning a few sum rules. We easily ¯nd

X

F 0

(g§
F ;m ;F 0;m § 1)2 =

c°
4A

¸ 2

2¼
8 ¨ m

4
for F = 3; (D.15)

X

F 0

(g§
F ;m ;F 0;m § 1)2 =

c°
4A

¸ 2

2¼
8 § m

4
for F = 4; (D.16)

X

F 0

(g+
F ;m ¡ 1;F 0;m ) ¢(g¡

F ;m +1; F 0;m ) = 0 for F = 3 and F = 4: (D.17)
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hF; m; 1; 1jF 0; m + 1i
F'=2 F'=3 F'=4 F'=5

F=3
p

(2 ¡ m )(3 ¡ m )
p

42
¡

p
(3 ¡ m )(4+ m )

p
24

p
(4+ m )(5+ m )

p
56

0

F=4 0
p

(3 ¡ m )(4 ¡ m )
p

72
¡

p
(4 ¡ m )(5+ m )

p
40

p
(5+ m )(6+ m )

p
90

hF; m; 1; 0jF 0; mi
F'=2 F'=3 F'=4 F'=5

F=3 ¡
p

(3 ¡ m )(3+ m )
p

21
mp
12

p
(4 ¡ m )(4+ m )

p
28

0

F=4 0 ¡
p

(4 ¡ m )(4+ m )
p

36
mp
20

p
(5 ¡ m )(5+ m )

p
45

hF; m; 1; ¡ 1jF 0; m ¡ 1i
F'=2 F'=3 F'=4 F'=5

F=3
p

(2+ m )(3+ m )
p

42

p
(4 ¡ m )(3+ m )

p
24

p
(4 ¡ m )(5 ¡ m )

p
56

0

F=4 0
p

(3+ m )(4+ m )
p

72

p
(5 ¡ m )(4+ m )

p
40

p
(5 ¡ m )(6 ¡ m )

p
90

½
F F 0 1

3=2 1=2 7=2

¾

F'=2 F'=3 F'=4 F'=5

F=3 ¡
p

1=28
p

3=112 ¡
p

5=336 0

F=4 0 1=12 ¡
p

7=432 1=6

Table D.1: Relevant Clebsch-Gordan coe±cients and 6j -symbols for the 6S1=2 !
6P3=2 transition in cesium.
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APPENDIX E

Photo Detection Theory

In this appendix we brie°y summarize the most important aspects of photo de-
tection theory and we tailor the theory to be directly applicable to our needs
in this thesis. Photo detection is well covered in the literature, seee.g. [82, 83].
Our experiments are made with balanceddetection setup as shown in Fig. E.1.
This is practically a homodyne measurement which has been described in [84]
and results of the sectionsbelow follow directly from the approach used in this
reference.

E.1 Stok es Vector Detection

Let us assumethat the detectors depicted in Fig. E.1 are in¯nitely fast and that
they deliver a current pulse e±(t ¡ t0) if a photon is incident on the detector
at time t0, where e is the unit electrical charge releasedby the photon. If the
detector quantum e±ciency is denoted ´ d we have

hi 1(t)i = e´d

D
ây

+45 ± (t)â+45 ± (t)
E

and hi 2(t)i = e´d

D
ây

¡ 45± (t)â¡ 45± (t)
E

) hi (t)i Sy
= hi 1(t) ¡ i 2(t)i = 2e´d

D
Ŝy (t)

E
:

(E.1)

The Sy index remindsusof the detector setupasshown in Fig. E.1. The spectrum
©(! ) of the photo current i (t) is de¯ned by

©(! ) =
Z 1

¡1
hi (t)i (t + ¿)i ei! ¿d¿; (E.2)
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l/2

i (t)2

i(t)i (t)1

-

âx , ây

â+45 ± = (âx + ây )=
p

2

â¡ 45± = (âx ¡ ây )=
p

2

Figure E.1: Detector system for measuring the Ŝy -component of light. The
incident light described by the ¯eld operators âx and ây is rotated by a ¸= 2-plate
and split on a polarizing beam splitter. The two photo diodes will measurethe
§ 45±-components of the incident ¯eld and the di®erential photo current i (t) =
i 1(t) ¡ i 2(t) is sensitive to Ŝy (t).

and to calculate this spectrum we needthe correlation function

hi (t)i (t + ¿)i Sy
= e2´ d

D
Á̂(t)

E
±(¿) + 4e2´ 2

d

D
: Ŝy (t)Ŝy (t + ¿) :

E
; (E.3)

where the colons denote normal and time ordering of ¯eld operators, i.e. the
Stokesoperators Ŝy (t) and Ŝy (t + ¿) should be written in terms of ¯eld operators
â§ 45± , ây

§ 45± or âx;y , ây
x;y and all daggersshould be moved to the left, and time

must increasetoward the center. Here ^Á(t) is the total photon °ux hitting the
two detectors. The ¯rst term of (E.3) describesthe possibility to count the same
electron twice when asking about the current. It only contributes at ¿ = 0 for
an in¯nitely fast detector and is known as shot noise of the light. The second
term is responsible for correlations between photo electrons arising from other
reasons,i.e. Ŝy at di®erent times may be correlated if the light beam in the past
passedthrough somemedium that a®ectedthe light. The correlation function
reads in the x; y-basis for ¿ > 0

hi (t)i (t + ¿)i Sy
= e2´ d

­
ây

x (t)âx (t) + ây
y (t)ây (t)

®
±(¿)

+ e2´ 2
d

©­
ây

x (t)ây
x (t + ¿)ây (t + ¿)ây (t)

®

+
­
ây

y (t)ây
y (t + ¿)âx (t + ¿)âx (t)

®

+
­
ây

x (t)ây
y (t + ¿)âx (t + ¿)ây (t)

®

+
­
ây

y (t)ây
x (t + ¿)ây (t + ¿)âx (t)

®ª
;

(E.4)

and for ¿ < 0 we just interchange t and t + ¿ above. This expressionis unap-
proximated but quite annoying to usesincewe from the light/matter interaction
equations get expressionsfor e.g. Ŝy and not for the normal and time ordered
¯eld operators directly. But if we make the approximation of a strong linearly
polarized beam of light along the x-axis (seeApp. A.3) we have

Á̂(t) = A2
x ; ây (t) =

1
Ax

³
Ŝy (t) + i Ŝz (t)

´
; ây

y (t) =
1

Ax

³
Ŝy (t) ¡ i Ŝz (t)

´
;

(E.5)
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and inserting this into (E.4) we get for ¿ > 0

hi (t)i (t + ¿)i Sy
¼ 2e2´ dSx ±(¿)

+ 4e2´ 2
d

0

@

D
Ŝy (t)Ŝy (t + ¿)

E
+

D
Ŝy (t + ¿)Ŝy (t)

E

2
¡

Dh
Ŝy (t + ¿); Ŝz (t)

iE

2i

1

A ;

(E.6)

and for ¿ < 0 we interchange t and t + ¿ which obviously only has an e®ecton
the last term. We could as well have chosen to measurethe Ŝz component of
light which would be implemented by replacing the ¸= 2-plate in Fig. E.1 with
a (suitably adjusted) ¸= 4-plate. Going through all the above results onceagain
would then yield (for ¿ > 0)

hi (t)i Sz
= 2e´d

D
Ŝz (t)

E
; (E.7)

hi (t)i (t + ¿)i Sz
¼ 2e2´ dSx ±(¿)

+ 4e2´ 2
d

0

@

D
Ŝz (t)Ŝz (t + ¿)

E
+

D
Ŝz (t + ¿)Ŝz (t)

E

2
¡

Dh
Ŝy (t); Ŝz (t + ¿)

iE

2i

1

A :

Equations (E.6) and (E.7) may be a little cumbersomebut they have the ad-
vantage that they are expresseddirectly in terms of Stokes operators Ŝy and
Ŝz .

E.2 Our Exp erimen tal Case and Detection

We will go on with the above equations and show that in our experimental
conditions they can be simpli¯ed. First of all, if the light is in the coher-
ent state with

D
Ŝy (t)

E
=

D
Ŝz (t)

E
= 0, the y-polarized component of light is

in the vacuum state. In this case (C.11) holds and we can easily show that­
ây (t)ây

y (t0)
®

= ±(t ¡ t0) while ĥay (t)ây (t0)i =
­
ây

y (t)ây
y (t0)

®
=

­
ây

y (t)ây (t0)
®

=
0. Under the approximation of strong linearly polarized light along the x-
axis we calculate further

D
Ŝy (t)Ŝy (t0)

E
=

D
Ŝz (t)Ŝz (t0)

E
= Sx =2 ¢±(t ¡ t0) and

Dh
Ŝy (t); Ŝz (t0)

i E
= iSx ¢±(t ¡ t0). In this case we have for perfect detector

e±ciency ´ d = 1

hi (t)i (t + ¿)i Sy
= hi (t)i (t + ¿)i Sz

= 2e2Sx ±(¿); (E.8)

and we stressthat this is only valid for a light in the coherent state incident on
a detector with 100%e±ciency. We may assumethat the light emitted from our
lasers are in the coherent state so the above considerations are valid for light
before an atomic sample, not after. The delta function ±(¿) ensuresthat the
spectrum (E.2) is white, i.e. independent on frequency ! .



142 Appendix E - Photo Detection Theor y

Now, we may also produce squeezedlight experimentally , and the character-
ization and detection of this is a long story [83, 85, 60]. We make a simpli¯ed
description assuming that the bandwidth of squeezingis in¯nite, i.e. the spec-
trum (E.2) measuredwith squeezedlight incident on a detector is independent
on frequency. This is a valid approximation under the circumstances of this
thesissincethe bandwidth of squeezingis much larger than the dynamical band-
width of atoms interacting with the light. A result of this assumption is that
hi (t)i (t + ¿)i Sy ;Sz

must be proportional to ±(¿) and this is then also required for
the right hand side of Eqs. (E.6) and (E.7). For the commutator we then only

have the choice
Dh

Ŝy (t); Ŝz (t0)
iE

= iSx ±(t ¡ t0).

Now, we know that we experimentally would measurehi (t)i (t + ¿)i Sy
= ²y ¢

2e2Sx ±(¿) and hi (t)i (t + ¿)i Sz
= ²z ¢2e2Sx ±(¿) where ²y and ²z characterize the

noiseof a Ŝy or Ŝz measurement relative to the caseof coherent state light (E.8).
Putting all the above together we concludethat

Dh
Ŝin

y (t); Ŝin
z (t0)

iE
= iSx ±(t ¡ t0); (E.9)

D
Ŝin

y (t)Ŝin
y (t0)

E
= ²y ¢

Sx

2
±(t ¡ t0); (E.10)

D
Ŝin

z (t)Ŝin
z (t0)

E
= ²z ¢

Sx

2
±(t ¡ t0); (E.11)

which is valid for all input ¯elds beforeatomic samplesencountered in this thesis,
squeezedor not. The squeezingparametersmust ful¯l ²y ¢²z ¸ 1. If ²y < 1 and
²z > 1 we have squeezingin Ŝy and anti-squeezingin Ŝz , and vice versa.

The physical interpretation of the delta correlations of the above equations
is that polarization properties of photons measuredat time t and of photons
measuredan in¯nitely small time step later are completely independent of each
other. This is obvious for the ây mode in the vacuum state (²y = ²z = 1). For
the squeezedstates photons must be correlated to each other, but the above just
states that correlated photons arrive in pairs at exactly the sametime (i.e. for
squeezingin Ŝy with ²y < 1 two photons may be correlated such that they will
click in two di®erent detectorsof Fig. E.1 giving no contribution in the di®erential
photo current i (t)).

The situation is completely di®erent if the light has passedan atomic sam-
ple with slow time dynamics, then Ŝy (t) and Ŝz (t + ¿) may possesinformation
about non-commuting observables of the atomic sample and (E.9) would not
hold. However, for a very speci¯c case(which is encountered in our experiments)
of Ŝy , Ŝz transforming like

Ŝout
y (t) = Ŝin

y (t) +
Z

dt0L(Ŝin
z (t0); : : :);

Ŝout
z (t) = Ŝin

z (t);
(E.12)

where L can be a function of many variables including atomic variables and Ŝin
z

but excluding Ŝin
y we easily ¯nd

Dh
Ŝout

y (t); Ŝout
z (t0)

iE
=

Dh
Ŝin

y (t); Ŝin
z (t0)

i E
=
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iSx ±(t ¡ t0) and we end up with

hi (t)i (t + ¿)i Sy
= 2e2

³D
Ŝout

y (t)Ŝout
y (t + ¿)

E
+

D
Ŝout

y (t + ¿)Ŝout
y (t)

E´
;

hi (t)i (t + ¿)i Sz
= 2e2

³D
Ŝout

z (t)Ŝout
z (t + ¿)

E
+

D
Ŝout

z (t + ¿)Ŝout
z (t)

E´
;

(E.13)

which is valid for 100%e®ective detectorsand for the very special caseof (E.12).
To include lessthan unit y e±ciency detection is straightforward if needed. We
also note that including ´ d < 1 in the description above or including it as a loss
along the lines of App. A.4 makes no di®erence. We seethat all the trouble
causedby the normal and time ordering in photo detection theory in somecases
can be boiled down to a simple expressioninvolving only Stokesoperators.

We conclude this appendix with a useful result for the spectrum (E.2) of a
measurement of Ŝout

y (or similarly Ŝout
z ). This is closeto what is known in the

literature as the Wiener-Khintchine theorem [86]. If the Fourier transformed
Stokes operator Ŝout

y (! ) = 1=
p

2¼
R

Ŝout
y (t)ei! t dt has a correlation function on

the form D
Ŝout

y (! )Ŝout
y (¡ ! 0)

E
= f (! )±(! ¡ ! 0); (E.14)

then the spectrum (E.2) of the photo current i (t) can be found by Fourier trans-
forming (E.13) and we get

©(! ) =
2e2
p

2¼
[f (! ) + f (¡ ! )] : (E.15)

The front factor is irrelevant but the fact that there are two terms with opposite
signs on ! is a result of the normal ordering of light operators. This result is
usedin Chap. 8.
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APPENDIX F

The Quadratic Zeeman E®ect

The quadratic Zeemane®ectis well understood [87], wewill outline the important
results in this appendix. An alkaline atom in an external magnetic ¯eld B is
described by the Hamiltonian

Ĥ = haI ¢J ¡
¹ J

J
J ¢B ¡

¹ I

I
I ¢B ; (F.1)

where J describes the angular momentum of the outermost electron, I is the
nuclear spin, a describesthe strength of the magnetic dipole interaction between
the electronicand nuclearspin, and h is Planck's constant. The magneticmoment
of the electron (for an s-electron with L = 0) is ¹ J = ¡ 1:0011596521869(41)¹ B .
The value for the nuclear moment in cesium is ¹ I = 2:582025(4)¹ N . Thus, the
last term in (F.1) always givesa minor correction comparedto the secondterm,
but the relative strength between the ¯rst and second terms depends on the
magnetic ¯eld B .

The exact solution for the energyE to the above Hamiltonian is

EF ;m = ¡
hº hfs

2(2I + 1)
¡

¹ I

I
B m §

hº hfs

2

r

1 +
4m

2I + 1
x + x2; (F.2)

where§ is usedfor F = I § 1=2, m is the magnetic quantum number (quantized
along the direction of the magnetic ¯eld), B = jB j, and the hyper¯ne splitting
º hfs relates to a by hº hfs = ha

2 (2I + 1). The parameter x describes the relative
strength betweenthe Zeemane®ectand the hyper¯ne splitting:

x =
(¡ ¹ J =J + ¹ I =I )B

hº hfs
: (F.3)
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For weak ¯elds m describes the projection of the total angular momentum F =
I + J (the total angular momentum is denotedJ in the rest of this thesis,with the
obvious possibility of confusion!). We seefrom (F.2) that for small ¯eld strengths
or very strong ¯elds, the energydependslinearly on B . In the intermediate region
the situation is quite non-linear. All our experiments are performed in the weak
¯eld regime with x ¼ 3 ¢10¡ 4. Here a linear approximation is very good, but it
is important to calculate also the secondorder contribution.

We calculate the separation of adjacent sub-levels starting out by expand-
ing (F.2) to ¯rst order in the magnetic ¯eld strength B (leaving out the constant
shift independent of B ). With the standard convention

E (1)
F ;m = gF ¹ B B m; (F.4)

we get for cesiumwith nuclear spin I = 7=2

gF =
1

¹ B

µ
¡

¹ I

I
§

¡ ¹ J =J + ¹ I =I
2I + 1

¶

=

(
0:250390 for F = 4

¡ 0:251194 for F = 3
:

(F.5)

Thesetwo numbers di®er in magnitude by approximately 0.3%. Thus we have a
slightly higher separation between levels for the caseof F = 3 than for F = 4.
To calculate the quadratic Zeemanshift, it will su±ce to do the approximation
¹ I = 0. In this casewe may write the ¯rst order expansion of (F.2) as hº L ´
Em +1 ¡ Em ¼ ¡ ¹ J =J

2I +1 ¢B , and we then easily derive to secondorder

Em +1 ¡ Em

h
= º L

µ
1 ¡

º L

º hfs
(2m + 1)

¶
: (F.6)

This equation describesthe transition frequencybetweenthe m'th and the (m +
1)'th level. As is described in Sec.7.1 we perform spectroscopy on transitions
with ¢ m = § 1, seeFig. 7.2(b). The separation º QZ causedby the quadratic
Zeemane®ectbetweentwo lines will thus be

º QZ =
2º 2

L

º hfs
: (F.7)

Most of our experiments have º L in the vicinit y of 325kHz corresponding to a
magnetic ¯eld of a little lessthan 1 Gauss. With the cesiumhyper¯ne splitting
being º hfs = 9:1926GHzwe get a quadratic Zeemansplitting of 23Hz.



147

APPENDIX G

Spin Decay and Langevin Forces

In this appendix we derive the correlation function for the Langevin noiseterms
F̂ y and F̂ z used in Chap. 8. TheseLangevin forcesare necessaryin presenceof
the decay terms of Eqs. (8.3) and (8.4). We may take these two equations and
leave out the terms from the coherent evolution of Heisenberg equations, i.e.

@
@t

Ĵ out
y (t) = ¡ ¡ Ĵy (t) + F̂ y (t); (G.1)

@
@t

Ĵ out
z (t) = ¡ ¡ Ĵz (t) + F̂ z (t): (G.2)

We assumethe reservoir to have no memory, i.e. the correlation functions can
be written

D
F̂ i (t)F̂ j (t0)

E
= kij ±(t ¡ t0). Integrating suitable combinations of the

above equationsover a small time step ¢ t will lead to the di®erent k ij 's. Starting
with kyz we get to ¯rst order

i
D

Ĵx

E
= i

D
Ĵx (t + ¢ t)

E
=

Dh
Ĵy (t + ¢ t); Ĵz (t + ¢ t)

i E

= (1 ¡ 2¡ ¢¢ t)
Dh

Ĵy (t); Ĵz (t)
i E

+
Z t +¢ t

t

Z t +¢ t

t

Dh
F̂ y (t0); F̂ z (t00)

iE
dt0dt00

= i (1 ¡ 2¡ ¢¢ t)
D

Ĵx

E
+ (kyz ¡ kzy )¢ t

) (kyz ¡ kzy ) = 2i ¡
D

Ĵx

E
;

(G.3)
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where we have assumedthe macroscopicmean value of Ĵx to be independent
on time for a well oriented sample. Note, that the quantit y (kyz ¡ kzy ) changes
sign if the macroscopicspin reversesdirection. We could alsohave calculated the
anti-commutator above,
¿h

Ĵy (t + ¢ t); Ĵz (t + ¢ t)
i

+

À
= (1 ¡ 2¡ ¢¢ t)

¿ h
Ĵy (t); Ĵz (t)

i

+

À
+ (kyz + kzy )¢ t:

(G.4)
But since Ĵy Ĵz + Ĵz Ĵy = (Ĵ 2

+ ¡ Ĵ 2
¡ )=2i and the expectation value of Ĵ 2

+ or Ĵ 2
¡ is

zero for a completely polarized samplewe have kyz + kzy = 0 to a high precision.
We proceedwith kzz ,

D
Ĵ 2

z (t + ¢ t)
E

= (1 ¡ 2¡ ¢¢ t)
D

Ĵ 2
z (t)

E
+

Z t +¢ t

t

Z t +¢ t

t

D
F̂ y (t0)F̂ z (t00)

E
dt0dt00

= (1 ¡ 2¡ ¢¢ t)
D

Ĵ 2
z

E
+ kzz¢ t

) kyy = kzz = 2¡
D

Ĵ 2
z

E
= ¡ Jx ;

(G.5)

where we again assumetime independenceof the variance of Ĵz (it is given by
its steady state value which in our casemeansthe coherent spin state since¡ is
governed by optical pumping to this state. The last equality re°ects that. We
also stated the same result for kyy which is derived in a similar fashion. We
concludethis appendix by repeating the results,

D
F̂ y (t)F̂ y (t0)

E
=

D
F̂ z (t)F̂ z (t0)

E
= ¡ ¢jJx j ¢±(t ¡ t0);

D
F̂ y (t)F̂ z (t0)

E
= ¡

D
F̂ z (t)F̂ y (t0)

E
= i ¡ ¢Jx ¢±(t ¡ t0);

(G.6)

where Jx is the mean value of the macroscopicspin Ĵx counted positive along
the x-axis.



149

Bibliograph y

[1] J. M. Radcli®e,J. Phys. A 4, 313 (1971).

[2] W. K. Wootters and W. H. Zurek, Nature 299, 802 (1982).

[3] N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, Rev. Mod. Phys. 74, 145
(2002).

[4] M. Hillery, Phys. Rev. A 61, 022309(2000).

[5] T. C. Ralph, Phys. Rev. A 61, 010303(2000).

[6] N. J. Cerf, M. Levy, and G. V. Assche, Phys. Rev. A 63, 052311(2001).

[7] C. Silberhorn, T. C. Ralph, N. LÄutkenhaus,and G. Leuchs, Phys. Rev. Lett.
89, 167901(2002).

[8] F. Grosshansand P. Grangier, Phys. Rev. Lett. 88, 057902(2002).

[9] F. Grosshanset al., Nature 421, 238 (2003).

[10] L. K. Grover, Phys. Rev. Lett. 79, 325 (1997).

[11] P. W. Shor, in Proceedings of the 35th Annual Symposium on the Founda-
tions of Computer Science (IEEE Computer Society Press, Los Alamitos,
California, 1994), p. 124.

[12] D. P. DiVincenzo, Phys. Rev. A 51, 1015(1995).

[13] J. I. Cirac and P. Zoller, Phys. Rev. Lett. 74, 4091(1995).

[14] C. Monroe et al., Phys. Rev. Lett. 75, 4714(1995).

[15] F. Schmidt-Kaler et al., Nature 422, 408 (2003).

[16] L. M. K. Vandersypen et al., Nature 414, 883 (2001).

[17] C. H. Bennett and D. P. DiVincenzo, Nature 404, 247 (2000).



150 BIBLIOGRAPHY

[18] S. Lloyd and S. L. Braunstein, Phys. Rev. Lett. 82, 1784(1999).

[19] S. L. Braunstein, Phys. Rev. Lett. 80, 4084(1998).

[20] S. Lloyd and J. J. E. Slotine, Phys. Rev. Lett. 80, 4088(1998).

[21] T. C. Ralph, W. J. Munro, and G. J. Milburn, Quantum Computation
with Coherent States,Linear Interactions and SuperposedResources,quant-
ph/0110115.

[22] S. Massar and E. S. Polzik, Phys. Rev. Lett. 91, 060401(2003).

[23] M. Brune et al., Phys. Rev. Lett. 77, 4887(1996).

[24] C. Monroe, D. M. Meekhof, B. E. King, and D. J. Wineland, Science272,
1131(1996).

[25] A. Furusawa et al., Science282, 706 (1998).

[26] D. Bouwmeesteret al., Nature 390, 575 (1997).

[27] D. Boschi et al., Phys. Rev. Lett. 80, 1121(1998).

[28] N. LÄutkenhaus,J. Calsamiglia, and K. A. Suominen,Phys. Rev. A 59, 3295
(1999).

[29] Y. H. Kim, S. P. Kulik, and Y. Shih, Phys. Rev. Lett. 86, 1370(2001).

[30] M. Fleischhauer and M. D. Lukin, Phys. Rev. Lett. 84, 5094(2000).

[31] D. F. Phillips et al., Phys. Rev. Lett. 86, 783 (2001).

[32] C. Liu, Z. Dutton, C. H. Behroozi, and L. V. Hau, Nature 409, 490 (2001).

[33] A. V. Turukhin et al., Phys. Rev. Lett. 88, 023602(2002).

[34] Y. H. Shih and C. O. Alley, Phys. Rev. Lett. 61, 2921(1988).

[35] Z. Y. Ou, S. F. Pereira, H. J. Kimble, and K. C. Peng, Phys. Rev. Lett. 68,
3663(1992).

[36] P. G. Kwiat et al., Phys. Rev. Lett. 75, 4337(1995).

[37] C. Schori, J. L. S¿rensen,and E. S. Polzik, Phys. Rev. A 66, 033802(2002).

[38] J. S. Bell, Physics 1, 195 (1965).

[39] A. Aspect, J. Dalibard, and G. Roger, Phys. Rev. Lett. 49, 1804(1982).

[40] E. Hagley et al., Phys. Rev. Lett. 79, 1 (1997).

[41] C. A. Sackett et al., Nature 404, 256 (2000).



BIBLIOGRAPHY 151

[42] D. J. Wineland et al., Phys. Rev. A 46, R6797(1992).

[43] G. Santarelli et al., Phys. Rev. Lett. 82, 4619(1999).

[44] J. Hald, J. L. S¿rensen,C. Schori, and E. S. Polzik, Phys. Rev. Lett. 83,
1319(1999).

[45] A. Kuzmich, L. Mandel, and N. P. Bigelow, Phys. Rev. Lett. 85, 1594(2000).

[46] H. J. Briegel et al., Lect. Notes Comput. Sc. 1509, 373 (1999).

[47] S. Haroche, M. Brune, and J. M. Raimond, Phil. Trans. Roy. Soc. A 355,
2367(1997).

[48] G. C. Bjorklund, M. D. Levenson,W. Lenth, and C. Ortiz, Appl. Phys. B
32, 145 (1983).

[49] O. Schmidt, K. M. Knaak, R. Wynands, and D. Meschede, Appl. Phys. B
59, 167 (1994).

[50] M. A. Bouchiat and J. Brossel,Phys. Rev. 147, 41 (1966).

[51] E. B. Alexandrov et al., Laser Phys. 6, 244 (1996).

[52] E. B. Alexandrov et al., Phys. Rev. A 66, 042903(2002).

[53] P. W. Milonni and J. H. Eberly, Lasers (John Wiley & Sons, New York,
1988).

[54] D. Kleppner, N. F. Ramsey, and H. M. Goldenberg, Phys. Rev. 126, 603
(1962).

[55] H. J. Metcalf and P. van der Straten, Laser Cooling and Trapping (Springer,
New York, 1999).

[56] W. Happer, Rev. Mod. Phys. 44, 169 (1972).

[57] D. Tupa and L. W. Anderson, Phys. Rev. A 36, 2142(1987).

[58] A. Kuzmich, N. P. Bigelow, and L. Mandel, Europhys. Lett. 42, 481 (1998).

[59] Y. Takahashi et al., Phys. Rev. A 60, 4974(1999).

[60] E. S. Polzik, J. L. S¿rensen,and J. Hald, Appl. Phys. B 66, 759 (1998).

[61] A. Einstein, B. Podolsky, and N. Rosen,Phys. Rev. 47, 777 (1935).

[62] L. Duan, J. I. Cirac, P. Zoller, and E. S. Polzik, Phys. Rev. Lett. 85, 5643
(2000).

[63] L. Duan, G. Giedke, J. I. Cirac, and P. Zoller, Phys. Rev. Lett. 84, 2722
(2000).



152 BIBLIOGRAPHY

[64] R. Simon, Phys. Rev. Lett. 84, 2726(2000).

[65] M. G. Raymer, A. C. Funk, B. C. Sanders,and H. de Guise, Phys. Rev. A
67, 052104(2003).

[66] F. Hong-yi and J. R. Klauder, Phys. Rev. A 49, 704 (1994).

[67] I. Bouchoule and K. M¿lmer, Phys. Rev. A 66, 043811(2002).

[68] A. DiLisi and K. M¿lmer, Phys. Rev. A 66, 052303(2002).

[69] C. Henkel and M. Wilk ens,Europhys. Lett. 47, 414 (1999).

[70] C. H. Bennett et al., Phys. Rev. Lett. 70, 1895(1993).

[71] L. Vaidman, Phys. Rev. A 49, 1473(1994).

[72] S. L. Braunstein, C. A. Fuchs, H. J. Kimble, and P. van Loock, Phys. Rev.
A 64, 022321(2001).

[73] F. Grosshansand P. Grangier, phys. Rev. A 64, 010301(2001).

[74] S. L. Braunstein and H. J. Kimble, Phys. Rev. A 80, 869 (1998).

[75] A. Kuzmich and E. S. Polzik, Phys. Rev. Lett. 85, 5639(2000).

[76] J. Fiurasek, Private communication.

[77] C. Cohen-Tannoudji, J. Dupont-Roc, and G. Grynberg, Intr oduction to
Quantum Electrodynamics (John Wiley & Sons,Inc., New York, 1989).

[78] K. J. Blow, R. Loudon, S. J. D. Phoenix, and T. J. Shepherd,Phys. Rev. A
42, 4102(1990).

[79] M. Fleishhauer and T. Ricter, Phys. Rev. A 51, 2430(1995).

[80] C. Cohen-Tannoudji, J. Dupont-Roc, and G. Grynberg, Atom-Photon In-
teractions (John Wiley & Sons,Inc., New York, 1992).

[81] A. R. Edmonds,Angular momentum in quantum mechanics(Princeton Uni-
versity Press,Princeton, 1974).

[82] C. W. Gardiner and P. Zoller, Quantum Noise, 2nd ed. (Springer, Heidel-
berg, Germany, 2000).

[83] Z. Y. Ou, C. K. Hong, and L. Mandel, J. Opt. Soc. Am. B 4, 1574(1987).

[84] B. Huttner and Y. Ben-Aryeh, Phys. Rev. A 40, 2479(1989).

[85] S. F. Pereira, X. Min, H. J. Kimble, and J. L. Hall, Phys. Rev. A 38, 4931
(1988).



BIBLIOGRAPHY 153

[86] P. Meystre and M. Sargent I I I, Elements of Quantum Optics (Springer-
Verlag, Berlin, 1991).

[87] N. F. Ramsey, Molecular Beams (Oxford University Press, Amen House,
London EC4, 1956).



Erratum

In the following we list errors in the thesis Entanglementand Quantum In-
teractions with Macroscopic Gas Samplesby Brian Julsgaard,University of
Aarhus, October 2003. This erratum hasbeenupdated August 28th, 2005.

1 In teraction Hamiltonian

There is a mistake of a factor of two in the derived e®ective Hamiltonian
Eq. (5.18). This error arises from a mistake in the adiabatic elimination
procedureof Sec.5.2. I am grateful to Klemens Hammerer for ¯nding the
error. Below we will explain it in detail.

1.1 A Spin-1/2 Toy Mo del

It is unnecessarygoing through the calculationsof Sec.5.2 with the full level
structure and propagating optical ¯elds. We shall considera singlespin-1/2
atom asdepictedin Fig. 1 interacting with only two light modes,â+ and â¡ .
The interaction Hamiltonian for this system is (in the frame rotating with
the laser ¯eld)

Ĥ int = ¹h¢( ¾̂33 + ¾̂44) + ¹hg(~ay
+ ~¾14 + ~¾41~a+ + ~ay

¡ ~¾23 + ~¾32~a¡ ); (1)

whereg is a real parameterdescribingthe interaction strength and the atomic
operators ~¾ij and light operators ~a§ have already beenwritten in the slowly

j1i j2i

j3i j4i

! L

! at

¢

â+ â¡

Figure 1: The level structure of a simplespin-1/2 model with optical frequen-
cies and detunings included. The propagation direction of the light mode
coincideswith the quantization axis of the atomic statesand we decompose
the light into the two polarization modesâ+ and â¡ .

1



varying form (see Eq. (5.9)). From this Hamiltonian we may derive the
equationsof motion. For the ground state operators we ¯nd

@̂¾11

@t
=

1
i ¹h

h
¾̂11; Ĥ int

i
= ¡ ig(~ay

+ ~¾14 ¡ ~¾41~a+ );

@̂¾22

@t
= ¡ ig(~ay

¡ ~¾23 ¡ ~¾32~a¡ );

@̂¾12

@t
= ¡ ig(~ay

¡ ~¾13 ¡ ~¾42~a+ ):

(2)

To proceedweneedapproximate resultsfor the atomic operatorson the right
hand sideof theseequations. For ~¾14 we ¯nd

@~¾14

@t
= ¡ i¢ ~¾14 ¡ ig~a+ (¾̂11 ¡ ¾̂44) ) ~¾14 ¼ ¡

g
¢

~a+ ¾̂11; (3)

wherethe adiabatic elimination is carried out by setting the time derivative
equal to zero. We also neglect the excited state population ¾̂44. For ~¾13 we
have

@~¾13

@t
= ¡ i¢ ~¾13 ¡ ig(~a¡ ~¾12 ¡ ~a+ ~¾43) ) ~¾13 ¼ ¡

g
¢

~a¡ ~¾12; (4)

wherethe excited state coherence~¾43 was neglected.In similar mannerswe
¯nd

~¾23 ¼ ¡
g
¢

~a¡ ¾̂22 and ~¾24 ¼ ¡
g
¢

~a+ ¾̂21: (5)

Now we insert the approximations (3)-(5) into the equationsof motion (2)
and obtain

@̂¾11

@t
=

@̂¾22

@t
= 0;

@̂¾12

@t
=

ig2

¢
(~ay

¡ ~a¡ ¡ ~ay
+ ~a+ )~¾12:

(6)

Theseequationsare reproducedby the e®ective ground state Hamiltonian

Ĥe® = ¡
¹hg2

¢

³
¾̂11~a

y
+ ~a+ + ¾̂22~a

y
¡ ~a¡

´
: (7)

If we instead (as was done in Sec. 5.2) insert the approximations (3)-(5)
directly into the un-approximated Hamiltonian (1) we obtain an e®ective
Hamiltonian twiceasbig which is wrong sincethe correct Eq. (6) would then
not be reproduced.
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1.2 Implications on the Exp erimen tal Results

The erroneousfactor of two discussedabove is of courseinherited to many
equations in the thesis chapters following the derivation of the interaction
Hamiltonian. In Eq. (6.15) the correct interaction parameter is

a = ¡
°

8A¢
¸ 2

2¼
a1; (6.15)

and whenever we encounter an expressionproportional to a (or a1, a2) we
must reducethe result by a factor of two. It is not convenient to list all the
casesherebut oneimportant equationis the estimation of the atomic to shot
noiseratio · 2 in the entanglement generationexperiment. We ¯nd

· 2 =
9:3 ¢P[mW] ¢T[ms] ¢a1(¢) ¢µDC [deg]

¢ blue[MHz]
: (9.51)

On page106 (and in di®erent papers published after the Ph.D. thesis, the
error was found in the summer of 2005) we actually discussa discrepancy
of a factor of approximately two in the observed atomic to shot noiseratio.
With the error found there is now a much better agreement betweentheory
and experiment.

2 Simple Errors

There is a mistake in Eq. (5.19). For F = 3 the sign of a1 hasto be reversed
such that we have

a1 =
1
56

µ
45

1 + ¢ 24=¢
¡

21
1 + ¢ 23=¢

¡ 80
¶

! ¡ 1 (8)

Up dates

Below we list publications which are a result of work performed after the
Ph.D. thesis. Hence,this shouldnot be consideredasa part of the thesisbut
as a supplement. I hope it will be useful to the reader.

² D. V. Kupriy anov, O. S. Mishina, I. M. Sokolov, B. Julsgaard, and
E. S. Polzik, Phys. Rev. A 71, 032348(2005). This publication treats
the higherordere®ectsasdiscussedin Chap.6. It alsocoveresthe noise
properties of the higher order terms. Available at quant-ph/0411083.
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² B. Julsgaard, J. Sherson,J. I. Cirac, J. Fiurasek, and E. S. Polzik,
Quantum Memory for Light, Nature 432, 482(2004). Also available at
quant-ph/0410072. This publication describesan experiment carried
out with a setup quite similar to the entanglement experiments in the
thesis.

² J. Sherson,B. Julsgaard, and E. S. Polzik, Distant Entanglementof
Macroscopic Gas Samples in Decoherence, Entanglement and Infor-
mation Protection in ComplexQuantum Systems, eds.W. M. Akulin,
A. Sarfati, G. Kurizki, and S. Pellegrin (Springer, Dordrecht, 2005).
Also available at quant-ph/0408146. This publication describesvery
well the new entanglement procedureas discussedin Sec.10.4.
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